We are asked to solve four problems: 2.1. Use the Intermediate Value Theorem to show that there is a root of the equation $\cos\sqrt{x} = e^x - 2$ in the interval $(0, 1)$. 2.2. Prove that $\lim_{x \to 10} (3 - \frac{4}{5}x) = -5$ using the precise definition of the limit. 2.3. Prove that $\lim_{x \to -1^-} \frac{5}{(x+1)^3} = -\infty$ using the precise definition of the limit. 2.4. Find the limit $\lim_{t \to 0} \frac{\tan^2 4t}{t^2}$.

AnalysisIntermediate Value TheoremLimitsPrecise Definition of LimitTrigonometric Limits
2025/6/6

1. Problem Description

We are asked to solve four problems:
2.

1. Use the Intermediate Value Theorem to show that there is a root of the equation $\cos\sqrt{x} = e^x - 2$ in the interval $(0, 1)$.

2.

2. Prove that $\lim_{x \to 10} (3 - \frac{4}{5}x) = -5$ using the precise definition of the limit.

2.

3. Prove that $\lim_{x \to -1^-} \frac{5}{(x+1)^3} = -\infty$ using the precise definition of the limit.

2.

4. Find the limit $\lim_{t \to 0} \frac{\tan^2 4t}{t^2}$.

2. Solution Steps

2.

1. Let $f(x) = \cos\sqrt{x} - e^x + 2$. We want to show that there exists $c \in (0, 1)$ such that $f(c) = 0$.

First, we evaluate f(x)f(x) at the endpoints of the interval (0,1)(0, 1):
f(0)=cos0e0+2=cos(0)1+2=11+2=2>0f(0) = \cos\sqrt{0} - e^0 + 2 = \cos(0) - 1 + 2 = 1 - 1 + 2 = 2 > 0.
f(1)=cos1e1+2=cos(1)e+20.542.72+2=0.18<0f(1) = \cos\sqrt{1} - e^1 + 2 = \cos(1) - e + 2 \approx 0.54 - 2.72 + 2 = -0.18 < 0.
Since f(0)>0f(0) > 0 and f(1)<0f(1) < 0, and f(x)f(x) is continuous on the interval [0,1][0, 1], by the Intermediate Value Theorem, there exists a c(0,1)c \in (0, 1) such that f(c)=0f(c) = 0. Thus, there is a root in the interval (0,1)(0, 1).
2.

2. We want to show that $\lim_{x \to 10} (3 - \frac{4}{5}x) = -5$.

Let f(x)=345xf(x) = 3 - \frac{4}{5}x and L=5L = -5. We need to show that for every ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that if 0<x10<δ0 < |x - 10| < \delta, then f(x)L<ϵ|f(x) - L| < \epsilon.
f(x)L=345x(5)=345x+5=845x=404x5=4510x=45x10|f(x) - L| = |3 - \frac{4}{5}x - (-5)| = |3 - \frac{4}{5}x + 5| = |8 - \frac{4}{5}x| = |\frac{40 - 4x}{5}| = \frac{4}{5}|10 - x| = \frac{4}{5}|x - 10|.
We want f(x)L<ϵ|f(x) - L| < \epsilon, so 45x10<ϵ\frac{4}{5}|x - 10| < \epsilon.
This implies x10<54ϵ|x - 10| < \frac{5}{4}\epsilon.
Thus, we can choose δ=54ϵ\delta = \frac{5}{4}\epsilon.
If 0<x10<δ=54ϵ0 < |x - 10| < \delta = \frac{5}{4}\epsilon, then f(x)L=45x10<45(54ϵ)=ϵ|f(x) - L| = \frac{4}{5}|x - 10| < \frac{4}{5}(\frac{5}{4}\epsilon) = \epsilon.
Therefore, limx10(345x)=5\lim_{x \to 10} (3 - \frac{4}{5}x) = -5.
2.

3. We want to prove that $\lim_{x \to -1^-} \frac{5}{(x+1)^3} = -\infty$.

Let M>0M > 0 be given. We want to find a δ>0\delta > 0 such that if 1δ<x<1-1 - \delta < x < -1, then 5(x+1)3<M\frac{5}{(x+1)^3} < -M.
5(x+1)3<M\frac{5}{(x+1)^3} < -M implies (x+1)3<5M(x+1)^3 < -\frac{5}{M}.
Taking the cube root of both sides, we have x+1<5M3=5M3x+1 < \sqrt[3]{-\frac{5}{M}} = -\sqrt[3]{\frac{5}{M}}.
Thus, x<15M3x < -1 - \sqrt[3]{\frac{5}{M}}.
We want 1δ<x<1-1 - \delta < x < -1, so we can choose δ=5M3\delta = \sqrt[3]{\frac{5}{M}}.
If 1δ<x<1-1 - \delta < x < -1, then 15M3<x<1-1 - \sqrt[3]{\frac{5}{M}} < x < -1, which implies x+1<5M3x+1 < -\sqrt[3]{\frac{5}{M}}.
Then (x+1)3<5M(x+1)^3 < -\frac{5}{M}, so 5(x+1)3<M\frac{5}{(x+1)^3} < -M.
Therefore, limx15(x+1)3=\lim_{x \to -1^-} \frac{5}{(x+1)^3} = -\infty.
2.

4. We want to find the limit $\lim_{t \to 0} \frac{\tan^2 4t}{t^2}$.

limt0tan24tt2=limt0tan4tttan4tt=limt0tan4t4t4tan4t4t4=limt0(tan4t4t)216\lim_{t \to 0} \frac{\tan^2 4t}{t^2} = \lim_{t \to 0} \frac{\tan 4t}{t} \cdot \frac{\tan 4t}{t} = \lim_{t \to 0} \frac{\tan 4t}{4t} \cdot 4 \cdot \frac{\tan 4t}{4t} \cdot 4 = \lim_{t \to 0} (\frac{\tan 4t}{4t})^2 \cdot 16.
Since limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1, we have limt0tan4t4t=1\lim_{t \to 0} \frac{\tan 4t}{4t} = 1.
Therefore, limt0tan24tt2=1216=16\lim_{t \to 0} \frac{\tan^2 4t}{t^2} = 1^2 \cdot 16 = 16.

3. Final Answer

2.

1. By the Intermediate Value Theorem, there exists a root in the interval $(0, 1)$.

2.

2. $\lim_{x \to 10} (3 - \frac{4}{5}x) = -5$.

2.

3. $\lim_{x \to -1^-} \frac{5}{(x+1)^3} = -\infty$.

2.

4. 16

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7