The problem is to evaluate the definite integral $I = \int_{0}^{\infty} \frac{\sin(x)}{x} dx$.

AnalysisDefinite IntegralLaplace TransformImproper IntegralTrigonometric FunctionsIntegration Techniques
2025/3/12

1. Problem Description

The problem is to evaluate the definite integral I=0sin(x)xdxI = \int_{0}^{\infty} \frac{\sin(x)}{x} dx.

2. Solution Steps

This integral is a classic example and can be solved using various methods, such as Laplace transforms or contour integration. Here, we will use Laplace transforms.
Let I(t)=0sin(x)xetxdxI(t) = \int_{0}^{\infty} \frac{\sin(x)}{x} e^{-tx} dx. We want to find I(0)I(0). Differentiating with respect to tt, we have:
dI(t)dt=ddt0sin(x)xetxdx=0t(sin(x)xetx)dx=0sin(x)x(xetx)dx=0sin(x)etxdx\frac{dI(t)}{dt} = \frac{d}{dt} \int_{0}^{\infty} \frac{\sin(x)}{x} e^{-tx} dx = \int_{0}^{\infty} \frac{\partial}{\partial t} (\frac{\sin(x)}{x} e^{-tx}) dx = \int_{0}^{\infty} \frac{\sin(x)}{x} (-x e^{-tx}) dx = -\int_{0}^{\infty} \sin(x) e^{-tx} dx
Now we need to evaluate the integral 0sin(x)etxdx\int_{0}^{\infty} \sin(x) e^{-tx} dx. We can use integration by parts twice or recall that
0eaxsin(bx)dx=ba2+b2\int_{0}^{\infty} e^{-ax} \sin(bx) dx = \frac{b}{a^2+b^2}
In our case, a=ta = t and b=1b = 1, so
0etxsin(x)dx=1t2+1\int_{0}^{\infty} e^{-tx} \sin(x) dx = \frac{1}{t^2+1}
Therefore, dI(t)dt=1t2+1\frac{dI(t)}{dt} = -\frac{1}{t^2+1}.
Integrating with respect to tt, we get
I(t)=1t2+1dt=arctan(t)+CI(t) = -\int \frac{1}{t^2+1} dt = -\arctan(t) + C
Now, we need to determine the constant CC. As tt approaches infinity, I(t)I(t) approaches 0 because the exponential term etxe^{-tx} makes the integral vanish. Thus, limtI(t)=0\lim_{t \to \infty} I(t) = 0.
Also, limtarctan(t)=π2\lim_{t \to \infty} -\arctan(t) = -\frac{\pi}{2}.
So, 0=π2+C0 = -\frac{\pi}{2} + C, which means C=π2C = \frac{\pi}{2}.
Therefore, I(t)=arctan(t)+π2I(t) = -\arctan(t) + \frac{\pi}{2}.
We want to find I(0)I(0), which is 0sin(x)xdx\int_{0}^{\infty} \frac{\sin(x)}{x} dx.
I(0)=arctan(0)+π2=0+π2=π2I(0) = -\arctan(0) + \frac{\pi}{2} = -0 + \frac{\pi}{2} = \frac{\pi}{2}.

3. Final Answer

π2\frac{\pi}{2}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1