The problem asks to find the value of $\tan(\frac{3\pi}{4})$.AlgebraTrigonometryTangent FunctionAngle Identities2025/3/121. Problem DescriptionThe problem asks to find the value of tan(3π4)\tan(\frac{3\pi}{4})tan(43π).2. Solution StepsWe can rewrite 3π4\frac{3\pi}{4}43π as π−π4\pi - \frac{\pi}{4}π−4π.Therefore,tan(3π4)=tan(π−π4)\tan(\frac{3\pi}{4}) = \tan(\pi - \frac{\pi}{4})tan(43π)=tan(π−4π)We use the identity tan(π−x)=−tan(x)\tan(\pi - x) = -\tan(x)tan(π−x)=−tan(x).So,tan(π−π4)=−tan(π4)\tan(\pi - \frac{\pi}{4}) = -\tan(\frac{\pi}{4})tan(π−4π)=−tan(4π)Since tan(π4)=1\tan(\frac{\pi}{4}) = 1tan(4π)=1, we have−tan(π4)=−1-\tan(\frac{\pi}{4}) = -1−tan(4π)=−1.3. Final Answer-1