We are given a cyclic quadrilateral ABCD in a circle. We are given that $m\angle BCD = 90^\circ$, $m\angle BAC = 49^\circ$, and $m\angle ADB = 61^\circ$. We need to find: a) $m\angle ACB$ b) $m\angle ABC$ c) $m\angle CAD$ d) $m\angle BEC$

GeometryCyclic QuadrilateralAnglesCirclesTrianglesGeometric Proofs
2025/3/12

1. Problem Description

We are given a cyclic quadrilateral ABCD in a circle. We are given that mBCD=90m\angle BCD = 90^\circ, mBAC=49m\angle BAC = 49^\circ, and mADB=61m\angle ADB = 61^\circ. We need to find:
a) mACBm\angle ACB
b) mABCm\angle ABC
c) mCADm\angle CAD
d) mBECm\angle BEC

2. Solution Steps

a) Finding mACBm\angle ACB:
Since ADB\angle ADB and ACB\angle ACB subtend the same arc ABAB, they must be equal.
mACB=mADBm\angle ACB = m\angle ADB
mACB=61m\angle ACB = 61^\circ
b) Finding mABCm\angle ABC:
In triangle ABC, we know mBAC=49m\angle BAC = 49^\circ and mACB=61m\angle ACB = 61^\circ. The sum of angles in a triangle is 180180^\circ. Therefore:
mABC=180mBACmACBm\angle ABC = 180^\circ - m\angle BAC - m\angle ACB
mABC=1804961m\angle ABC = 180^\circ - 49^\circ - 61^\circ
mABC=180110m\angle ABC = 180^\circ - 110^\circ
mABC=70m\angle ABC = 70^\circ
c) Finding mCADm\angle CAD:
Since BCD=90\angle BCD = 90^\circ, we have a right angle at CC. The angles BCA\angle BCA and ACD\angle ACD sum to 9090^\circ.
mACD=90mACBm\angle ACD = 90^\circ - m\angle ACB
mACD=9061m\angle ACD = 90^\circ - 61^\circ
mACD=29m\angle ACD = 29^\circ
Also, CAD\angle CAD and CBD\angle CBD subtend the same arc CD, so
mCAD=mCBDm\angle CAD = m\angle CBD.
Since ABCD is a cyclic quadrilateral, opposite angles sum to 180180^\circ.
mBAD+mBCD=180m\angle BAD + m\angle BCD = 180^\circ
mBAD+90=180m\angle BAD + 90^\circ = 180^\circ
mBAD=90m\angle BAD = 90^\circ
Also,
mBAD=mBAC+mCADm\angle BAD = m\angle BAC + m\angle CAD.
Thus, mCAD=mBADmBACm\angle CAD = m\angle BAD - m\angle BAC.
mCAD=9049m\angle CAD = 90^\circ - 49^\circ
mCAD=41m\angle CAD = 41^\circ
d) Finding mBECm\angle BEC:
In triangle ABE, we have mBAC=49m\angle BAC = 49^\circ and mABC=70m\angle ABC = 70^\circ. Then
mAEB=180(mBAC+mABC)m\angle AEB = 180^\circ - (m\angle BAC + m\angle ABC)
mAEB=180(49+70)m\angle AEB = 180^\circ - (49^\circ + 70^\circ)
mAEB=180119m\angle AEB = 180^\circ - 119^\circ
mAEB=61m\angle AEB = 61^\circ
Since AEB\angle AEB and BEC\angle BEC are supplementary angles, we have
mBEC=180mAEBm\angle BEC = 180^\circ - m\angle AEB
mBEC=18061m\angle BEC = 180^\circ - 61^\circ
mBEC=119m\angle BEC = 119^\circ

3. Final Answer

a) mACB=61m\angle ACB = 61^\circ
b) mABC=70m\angle ABC = 70^\circ
c) mCAD=41m\angle CAD = 41^\circ
d) mBEC=119m\angle BEC = 119^\circ

Related problems in "Geometry"

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3

In the given diagram, we are given that $∠PMQ = 34°$ and $∠NQM = 28°$. We need to find the measure o...

AnglesCirclesCyclic QuadrilateralsTriangles
2025/6/3

We need to sketch the graph of $f(x, y)$ for the following functions: 7. $f(x, y) = 6$ 8. $f(x, y) =...

3D GeometrySurfacesPlanesCylindersParaboloidsEllipsoidsHemispheres
2025/6/3

The problem provides the measures of the six interior angles of a hexagon in terms of $x$. The task ...

PolygonHexagonInterior AnglesAngle SumAlgebra
2025/6/3

We are asked to describe the graphs of several functions of two variables, $f(x, y)$.

3D GeometryFunctions of Two VariablesPlanesCylindersSpheresEllipsoidsParaboloids
2025/6/3

We are given that a sector of a circle has a radius of 21 cm and subtends an angle of $120^{\circ}$ ...

Arc LengthCirclesSectorTrigonometry
2025/6/3

Problem 30: We are given a right triangle $PQR$ with $\angle PQR = 90^\circ$, $|QR| = 2$ cm, and $\a...

TrigonometryRight TrianglesTriangle Angle SumAngle Ratios
2025/6/3

Question 28: The probability that a seed planted will germinate is 0.75. If 3 of such seeds are plan...

ConeVolumeRadius
2025/6/3