Given three vectors $a = (3, 3, 1)$, $b = (-2, -1, 0)$, and $c = (-2, -3, -1)$, we are asked to find: (a) $a \times b$ (b) $a \times (b + c)$ (c) $a \cdot (b \times c)$ (d) $a \times (b \times c)$

GeometryVectorsCross ProductDot ProductVector Algebra
2025/4/9

1. Problem Description

Given three vectors a=(3,3,1)a = (3, 3, 1), b=(2,1,0)b = (-2, -1, 0), and c=(2,3,1)c = (-2, -3, -1), we are asked to find:
(a) a×ba \times b
(b) a×(b+c)a \times (b + c)
(c) a(b×c)a \cdot (b \times c)
(d) a×(b×c)a \times (b \times c)

2. Solution Steps

(a) a×b=ijk331210=(301(1))i(301(2))j+(3(1)3(2))k=(0+1)i(0+2)j+(3+6)k=1i2j+3k=(1,2,3)a \times b = \begin{vmatrix} i & j & k \\ 3 & 3 & 1 \\ -2 & -1 & 0 \end{vmatrix} = (3 \cdot 0 - 1 \cdot (-1))i - (3 \cdot 0 - 1 \cdot (-2))j + (3 \cdot (-1) - 3 \cdot (-2))k = (0 + 1)i - (0 + 2)j + (-3 + 6)k = 1i - 2j + 3k = (1, -2, 3)
(b) First, we compute b+c=(2,1,0)+(2,3,1)=(4,4,1)b + c = (-2, -1, 0) + (-2, -3, -1) = (-4, -4, -1).
Then, a×(b+c)=ijk331441=(3(1)1(4))i(3(1)1(4))j+(3(4)3(4))k=(3+4)i(3+4)j+(12+12)k=1i1j+0k=(1,1,0)a \times (b + c) = \begin{vmatrix} i & j & k \\ 3 & 3 & 1 \\ -4 & -4 & -1 \end{vmatrix} = (3 \cdot (-1) - 1 \cdot (-4))i - (3 \cdot (-1) - 1 \cdot (-4))j + (3 \cdot (-4) - 3 \cdot (-4))k = (-3 + 4)i - (-3 + 4)j + (-12 + 12)k = 1i - 1j + 0k = (1, -1, 0)
(c) First, we compute b×c=ijk210231=((1)(1)0(3))i((2)(1)0(2))j+((2)(3)(1)(2))k=(10)i(20)j+(62)k=1i2j+4k=(1,2,4)b \times c = \begin{vmatrix} i & j & k \\ -2 & -1 & 0 \\ -2 & -3 & -1 \end{vmatrix} = ((-1) \cdot (-1) - 0 \cdot (-3))i - ((-2) \cdot (-1) - 0 \cdot (-2))j + ((-2) \cdot (-3) - (-1) \cdot (-2))k = (1 - 0)i - (2 - 0)j + (6 - 2)k = 1i - 2j + 4k = (1, -2, 4).
Then, a(b×c)=(3,3,1)(1,2,4)=31+3(2)+14=36+4=1a \cdot (b \times c) = (3, 3, 1) \cdot (1, -2, 4) = 3 \cdot 1 + 3 \cdot (-2) + 1 \cdot 4 = 3 - 6 + 4 = 1.
(d) First, we compute b×c=(1,2,4)b \times c = (1, -2, 4) from part (c).
Then, a×(b×c)=ijk331124=(341(2))i(3411)j+(3(2)31)k=(12+2)i(121)j+(63)k=14i11j9k=(14,11,9)a \times (b \times c) = \begin{vmatrix} i & j & k \\ 3 & 3 & 1 \\ 1 & -2 & 4 \end{vmatrix} = (3 \cdot 4 - 1 \cdot (-2))i - (3 \cdot 4 - 1 \cdot 1)j + (3 \cdot (-2) - 3 \cdot 1)k = (12 + 2)i - (12 - 1)j + (-6 - 3)k = 14i - 11j - 9k = (14, -11, -9).

3. Final Answer

(a) a×b=(1,2,3)a \times b = (1, -2, 3)
(b) a×(b+c)=(1,1,0)a \times (b + c) = (1, -1, 0)
(c) a(b×c)=1a \cdot (b \times c) = 1
(d) a×(b×c)=(14,11,9)a \times (b \times c) = (14, -11, -9)

Related problems in "Geometry"

We are given the area of a square as 81 square meters, and we are asked to find the side length of t...

AreaSquareSide LengthGeometry
2025/7/2

We are asked to find the area of a square, given that its side length is $0.7$ meters. We are asked ...

AreaSquareUnit Conversion
2025/7/2

We are given a shaded shape on a grid. Each square on the grid has a side length of 1 cm. We are ask...

AreaApproximationGridShapes
2025/7/2

The problem states that $Z$ is the centroid of triangle $TRS$. Given that $TO = 7b + 5$, $OR = 13b -...

CentroidTriangleMidpointAlgebraic EquationsLine Segments
2025/7/1

We are given that $m\angle ACT = 15a - 8$ and $m\angle ACB = 74$. Also, S is the incenter of $\trian...

Angle BisectorIncenterTriangleAnglesAlgebraic Manipulation
2025/7/1

$S$ is the circumcenter of triangle $ABC$. $CP = 7x - 1$ and $PB = 6x + 3$. Find the value of $x$ an...

GeometryTriangleCircumcenterMidpointAlgebraic Equations
2025/7/1

We are given a triangle $ABC$ and a point $S$ which is the circumcenter. $CP = 7x - 1$ and $PB = 6x ...

TriangleCircumcenterLine SegmentsAlgebraic Equations
2025/7/1

The problem provides the radius of a circle as $21.5$ cm and a central angle as $316$ degrees. We ne...

CircleArc LengthCircumferenceAngle Measurement
2025/7/1

The problem provides the radius of a circle, $r = 21.5$ cm, and the angle of a sector, $\theta = 316...

CircleSectorArc LengthRadiansAngle Conversion
2025/7/1

The problem asks us to locate the points D, F, E, and G on the graph based on their relative positio...

Coordinate GeometryPointsSpatial ReasoningVisual Estimation
2025/6/30