Given three vectors $a = (3, 3, 1)$, $b = (-2, -1, 0)$, and $c = (-2, -3, -1)$, we are asked to find: (a) $a \times b$ (b) $a \times (b + c)$ (c) $a \cdot (b \times c)$ (d) $a \times (b \times c)$

GeometryVectorsCross ProductDot ProductVector Algebra
2025/4/9

1. Problem Description

Given three vectors a=(3,3,1)a = (3, 3, 1), b=(2,1,0)b = (-2, -1, 0), and c=(2,3,1)c = (-2, -3, -1), we are asked to find:
(a) a×ba \times b
(b) a×(b+c)a \times (b + c)
(c) a(b×c)a \cdot (b \times c)
(d) a×(b×c)a \times (b \times c)

2. Solution Steps

(a) a×b=ijk331210=(301(1))i(301(2))j+(3(1)3(2))k=(0+1)i(0+2)j+(3+6)k=1i2j+3k=(1,2,3)a \times b = \begin{vmatrix} i & j & k \\ 3 & 3 & 1 \\ -2 & -1 & 0 \end{vmatrix} = (3 \cdot 0 - 1 \cdot (-1))i - (3 \cdot 0 - 1 \cdot (-2))j + (3 \cdot (-1) - 3 \cdot (-2))k = (0 + 1)i - (0 + 2)j + (-3 + 6)k = 1i - 2j + 3k = (1, -2, 3)
(b) First, we compute b+c=(2,1,0)+(2,3,1)=(4,4,1)b + c = (-2, -1, 0) + (-2, -3, -1) = (-4, -4, -1).
Then, a×(b+c)=ijk331441=(3(1)1(4))i(3(1)1(4))j+(3(4)3(4))k=(3+4)i(3+4)j+(12+12)k=1i1j+0k=(1,1,0)a \times (b + c) = \begin{vmatrix} i & j & k \\ 3 & 3 & 1 \\ -4 & -4 & -1 \end{vmatrix} = (3 \cdot (-1) - 1 \cdot (-4))i - (3 \cdot (-1) - 1 \cdot (-4))j + (3 \cdot (-4) - 3 \cdot (-4))k = (-3 + 4)i - (-3 + 4)j + (-12 + 12)k = 1i - 1j + 0k = (1, -1, 0)
(c) First, we compute b×c=ijk210231=((1)(1)0(3))i((2)(1)0(2))j+((2)(3)(1)(2))k=(10)i(20)j+(62)k=1i2j+4k=(1,2,4)b \times c = \begin{vmatrix} i & j & k \\ -2 & -1 & 0 \\ -2 & -3 & -1 \end{vmatrix} = ((-1) \cdot (-1) - 0 \cdot (-3))i - ((-2) \cdot (-1) - 0 \cdot (-2))j + ((-2) \cdot (-3) - (-1) \cdot (-2))k = (1 - 0)i - (2 - 0)j + (6 - 2)k = 1i - 2j + 4k = (1, -2, 4).
Then, a(b×c)=(3,3,1)(1,2,4)=31+3(2)+14=36+4=1a \cdot (b \times c) = (3, 3, 1) \cdot (1, -2, 4) = 3 \cdot 1 + 3 \cdot (-2) + 1 \cdot 4 = 3 - 6 + 4 = 1.
(d) First, we compute b×c=(1,2,4)b \times c = (1, -2, 4) from part (c).
Then, a×(b×c)=ijk331124=(341(2))i(3411)j+(3(2)31)k=(12+2)i(121)j+(63)k=14i11j9k=(14,11,9)a \times (b \times c) = \begin{vmatrix} i & j & k \\ 3 & 3 & 1 \\ 1 & -2 & 4 \end{vmatrix} = (3 \cdot 4 - 1 \cdot (-2))i - (3 \cdot 4 - 1 \cdot 1)j + (3 \cdot (-2) - 3 \cdot 1)k = (12 + 2)i - (12 - 1)j + (-6 - 3)k = 14i - 11j - 9k = (14, -11, -9).

3. Final Answer

(a) a×b=(1,2,3)a \times b = (1, -2, 3)
(b) a×(b+c)=(1,1,0)a \times (b + c) = (1, -1, 0)
(c) a(b×c)=1a \cdot (b \times c) = 1
(d) a×(b×c)=(14,11,9)a \times (b \times c) = (14, -11, -9)

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9