We are asked to simplify the expression $\frac{2^3 \cdot 4^{-1} \cdot 8^2}{16^{-1} \cdot 32^{\frac{1}{5}}}$.

AlgebraExponentsSimplificationPowers of 2
2025/4/11

1. Problem Description

We are asked to simplify the expression 2341821613215\frac{2^3 \cdot 4^{-1} \cdot 8^2}{16^{-1} \cdot 32^{\frac{1}{5}}}.

2. Solution Steps

First, rewrite all numbers as powers of

2. $4 = 2^2$

8=238 = 2^3
16=2416 = 2^4
32=2532 = 2^5
Substitute these into the original expression:
23(22)1(23)2(24)1(25)15\frac{2^3 \cdot (2^2)^{-1} \cdot (2^3)^2}{(2^4)^{-1} \cdot (2^5)^{\frac{1}{5}}}
Using the power of a power rule (am)n=amn(a^m)^n = a^{mn}, we get:
2322262421\frac{2^3 \cdot 2^{-2} \cdot 2^6}{2^{-4} \cdot 2^1}
Using the rule aman=am+na^m \cdot a^n = a^{m+n}, we simplify the numerator and denominator separately:
Numerator: 232226=23+(2)+6=272^3 \cdot 2^{-2} \cdot 2^6 = 2^{3 + (-2) + 6} = 2^{7}
Denominator: 2421=24+1=232^{-4} \cdot 2^1 = 2^{-4 + 1} = 2^{-3}
Now, divide the numerator by the denominator using the rule aman=amn\frac{a^m}{a^n} = a^{m-n}:
2723=27(3)=27+3=210\frac{2^7}{2^{-3}} = 2^{7 - (-3)} = 2^{7 + 3} = 2^{10}
Finally, evaluate 2102^{10}.
210=10242^{10} = 1024

3. Final Answer

1024

Related problems in "Algebra"

We are asked to prove the trigonometric identity $(1 + tan A)^2 + (1 + cot A)^2 = (sec A + csc A)^2$...

Trigonometric IdentitiesProofTrigonometry
2025/4/15

We are asked to prove the trigonometric identity: $sinA(cscA + sinAsec^2A) = sec^2A$

TrigonometryTrigonometric IdentitiesProof
2025/4/15

The problem asks us to find the equation of line $l$ and line $m$ in slope-intercept form. The slope...

Linear EquationsSlope-intercept formLinesCoordinate Geometry
2025/4/14

We are asked to simplify the expression $x(x+5) - 2(x+5)$.

PolynomialsFactoringSimplificationExpanding
2025/4/14

The problem is to solve the equation $5(3 - x) = 55$ for $x$.

Linear EquationsSolving EquationsVariable Isolation
2025/4/14

The problem asks to find the maximum value $M$ of the function $f(x) = |x^2 - 2x|$ in the interval $...

FunctionsAbsolute ValueMaximum ValueOptimizationIntervals
2025/4/14

We are asked to expand the expression $(7 + \sqrt{3x})^2$.

Algebraic ExpansionSquare of a BinomialRadicals
2025/4/14

We are given the function $f(x) = |x-5| - 1$. We need to determine if the function is even, odd, or...

FunctionsAbsolute ValueEven/Odd FunctionsRange of a FunctionGraphing
2025/4/14

We are given two sequences $(U_n)_{n \in \mathbb{N}}$ and $(V_n)_{n \in \mathbb{N}}$ defined by the ...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given two sequences, $(U_n)_{n \in \mathbb{N}}$ and $(V_n)_{n \in \mathbb{N}}$, defined by $U...

SequencesGeometric SequencesRecurrence RelationsExplicit Formula
2025/4/14