We are asked to prove the trigonometric identity: $sinA(cscA + sinAsec^2A) = sec^2A$

AlgebraTrigonometryTrigonometric IdentitiesProof
2025/4/15

1. Problem Description

We are asked to prove the trigonometric identity:
sinA(cscA+sinAsec2A)=sec2AsinA(cscA + sinAsec^2A) = sec^2A

2. Solution Steps

We will start with the left side of the equation and try to simplify it to match the right side.
sinA(cscA+sinAsec2A)sinA(cscA + sinAsec^2A)
First, distribute the sinAsinA term:
sinAcscA+sinAsinAsec2AsinA \cdot cscA + sinA \cdot sinA \cdot sec^2A
Recall the definition of cscAcscA and secAsecA:
cscA=1sinAcscA = \frac{1}{sinA}
secA=1cosAsecA = \frac{1}{cosA}
Substitute cscA=1sinAcscA = \frac{1}{sinA} into the expression:
sinA1sinA+sin2Asec2AsinA \cdot \frac{1}{sinA} + sin^2A \cdot sec^2A
Simplify the first term:
1+sin2Asec2A1 + sin^2A \cdot sec^2A
Substitute secA=1cosAsecA = \frac{1}{cosA} into the expression:
1+sin2A1cos2A1 + sin^2A \cdot \frac{1}{cos^2A}
1+sin2Acos2A1 + \frac{sin^2A}{cos^2A}
Recall the definition of tanAtanA:
tanA=sinAcosAtanA = \frac{sinA}{cosA}
Substitute tanA=sinAcosAtanA = \frac{sinA}{cosA} into the expression:
1+tan2A1 + tan^2A
Recall the Pythagorean trigonometric identity:
1+tan2A=sec2A1 + tan^2A = sec^2A
Substitute 1+tan2A=sec2A1 + tan^2A = sec^2A into the expression:
sec2Asec^2A
This matches the right side of the original equation.

3. Final Answer

sinA(cscA+sinAsec2A)=sec2AsinA(cscA + sinAsec^2A) = sec^2A
The identity is proven.

Related problems in "Algebra"

The problem asks to simplify the given expressions and write them in positive index form. This means...

ExponentsSimplificationNegative ExponentsAlgebraic Expressions
2025/4/17

The problem asks to evaluate the following expressions: (a) $a^0 \times b^0$ (b) $x^0 + 2p^0 - a^0$ ...

ExponentsOrder of OperationsSimplification
2025/4/17

We are given that $x - \frac{1}{x} = m$. a) We need to find the value of $x^2 + \frac{1}{x^2}$. b) W...

Algebraic ManipulationEquationsExponentsVariables
2025/4/17

The problem requires us to simplify four algebraic expressions. (a) $\frac{a^4 \times a^3}{a^2}$ (b)...

ExponentsSimplificationAlgebraic Expressions
2025/4/17

The problem requires us to graph the exponential function $f(x) = 4 \cdot 2^x$.

Exponential FunctionsGraphingFunction EvaluationExponents
2025/4/17

Simplify the expression $(y^{\frac{3}{4}})^{\frac{1}{2}}$.

ExponentsSimplificationPower of a Power Rule
2025/4/17

The problem asks us to simplify the following expressions: (b) $(x^5)^3$ (c) $(a^2b^3)^4$ (d) $a^2(a...

ExponentsSimplificationPolynomialsDistributive PropertyPower of a PowerProduct of Powers
2025/4/17

The problem asks to simplify the given expression: $(\frac{2r^{-3}t^6}{5u^9})^4$

ExponentsSimplificationAlgebraic Expressions
2025/4/17

The problem asks us to determine if the two given expressions, $(5p^3q)(4p^5q^9)$ and $20p^8q^{10}$,...

PolynomialsExponentsSimplificationEquivalence
2025/4/17

The problem is to simplify the expression $(p^5r^2)^4(-7p^3r)(6pr^3)$.

ExponentsSimplificationPolynomials
2025/4/17