We are asked to solve four different math problems: (a) Find the value of $w$ such that $\log(w+5) + \log(w-5) = 4\log(2) + 2\log(3)$. (b) Solve for $x$ in the equation $(\frac{1}{3})^{\frac{x^2-2x}{16-2x^2}} = \sqrt[4x]{9}$. (c) Simplify the expression $[5a^5b^2 \times 3(ab^3)^2] \div (15a^2b^8)$. (d) If $a$ and $b$ are whole numbers such that $a^b = 121$, evaluate $(a-1)^{b+1}$.

AlgebraLogarithmsExponentsSimplificationEquationsAlgebraic ManipulationInteger Properties
2025/3/15

1. Problem Description

We are asked to solve four different math problems:
(a) Find the value of ww such that log(w+5)+log(w5)=4log(2)+2log(3)\log(w+5) + \log(w-5) = 4\log(2) + 2\log(3).
(b) Solve for xx in the equation (13)x22x162x2=94x(\frac{1}{3})^{\frac{x^2-2x}{16-2x^2}} = \sqrt[4x]{9}.
(c) Simplify the expression [5a5b2×3(ab3)2]÷(15a2b8)[5a^5b^2 \times 3(ab^3)^2] \div (15a^2b^8).
(d) If aa and bb are whole numbers such that ab=121a^b = 121, evaluate (a1)b+1(a-1)^{b+1}.

2. Solution Steps

(a)
We have the equation log(w+5)+log(w5)=4log(2)+2log(3)\log(w+5) + \log(w-5) = 4\log(2) + 2\log(3).
Using the logarithm properties log(A)+log(B)=log(AB)\log(A) + \log(B) = \log(AB) and nlog(A)=log(An)n\log(A) = \log(A^n), we get
log((w+5)(w5))=log(24)+log(32)\log((w+5)(w-5)) = \log(2^4) + \log(3^2).
log(w225)=log(16)+log(9)\log(w^2-25) = \log(16) + \log(9).
log(w225)=log(16×9)\log(w^2-25) = \log(16 \times 9).
log(w225)=log(144)\log(w^2-25) = \log(144).
Since the logarithms are equal, we have w225=144w^2-25 = 144.
w2=144+25=169w^2 = 144+25 = 169.
w=±169=±13w = \pm \sqrt{169} = \pm 13.
Since we need w+5>0w+5 > 0 and w5>0w-5 > 0, we require w>5w > 5.
Therefore, w=13w = 13.
(b)
The equation is (13)x22x162x2=94x(\frac{1}{3})^{\frac{x^2-2x}{16-2x^2}} = \sqrt[4x]{9}.
(13)x22x162x2=914x(\frac{1}{3})^{\frac{x^2-2x}{16-2x^2}} = 9^{\frac{1}{4x}}.
(31)x22x162x2=(32)14x(3^{-1})^{\frac{x^2-2x}{16-2x^2}} = (3^2)^{\frac{1}{4x}}.
3x2+2x162x2=324x3^{\frac{-x^2+2x}{16-2x^2}} = 3^{\frac{2}{4x}}.
3x2+2x162x2=312x3^{\frac{-x^2+2x}{16-2x^2}} = 3^{\frac{1}{2x}}.
Therefore, x2+2x162x2=12x\frac{-x^2+2x}{16-2x^2} = \frac{1}{2x}.
x(x2)2(8x2)=12x\frac{-x(x-2)}{2(8-x^2)} = \frac{1}{2x}.
x(x2)2(22x)(22+x)=12x\frac{-x(x-2)}{2(2\sqrt{2}-x)(2\sqrt{2}+x)} = \frac{1}{2x}.
x(x2)(2x)=162x2-x(x-2)(2x) = 16-2x^2.
2x2(x2)=162x2-2x^2(x-2) = 16-2x^2.
2x3+4x2=162x2-2x^3+4x^2 = 16-2x^2.
2x3+6x216=0-2x^3+6x^2-16=0.
x33x2+8=0x^3-3x^2+8=0.
Let f(x)=x33x2+8f(x) = x^3 - 3x^2 + 8. We observe that f(1)=(1)33(1)2+8=13+8=4f(-1) = (-1)^3 - 3(-1)^2 + 8 = -1 - 3 + 8 = 4.
f(2)=(2)33(2)2+8=812+8=12f(-2) = (-2)^3 - 3(-2)^2 + 8 = -8 - 12 + 8 = -12.
f(0)=8f(0) = 8.
We can try x=1x=-1, then (13)1+2162=(13)314=94(1)=914(\frac{1}{3})^{\frac{1+2}{16-2}} = (\frac{1}{3})^{\frac{3}{14}} = \sqrt[4(-1)]{9} = 9^{-\frac{1}{4}}.
(13)314=(19)14(\frac{1}{3})^{\frac{3}{14}} = (\frac{1}{9})^{\frac{1}{4}}
3314=324=3123^{-\frac{3}{14}} = 3^{-\frac{2}{4}} = 3^{-\frac{1}{2}}
This is not true.
However, if we try x=2x = -2:
(13)4+4168=(13)88=13(\frac{1}{3})^{\frac{4+4}{16-8}} = (\frac{1}{3})^{\frac{8}{8}} = \frac{1}{3}.
94(2)=98=918=(32)18=314\sqrt[4(-2)]{9} = \sqrt[-8]{9} = 9^{-\frac{1}{8}} = (3^2)^{-\frac{1}{8}} = 3^{-\frac{1}{4}}.
Still not true.
Notice that if x22x=0x^2-2x=0, then x=0x=0 or x=2x=2. If x=2x=2, then 98\sqrt[8]{9} which is not 11. If x=0x=0 the root is not defined.
x(x2)2(8x2)=12x\frac{-x(x-2)}{2(8-x^2)} = \frac{1}{2x}.
x2(x2)=8x2-x^2(x-2) = 8-x^2.
x3+2x2=8x2-x^3 + 2x^2 = 8-x^2.
x33x2+8=0x^3 - 3x^2 + 8 = 0.
Let x=1.64x=-1.64, then (1.64)33(1.64)2+8=4.418.07+8=4.48(-1.64)^3 - 3(-1.64)^2 + 8 = -4.41 - 8.07 + 8 = -4.48.
(c)
[5a5b2×3(ab3)2]÷(15a2b8)[5a^5b^2 \times 3(ab^3)^2] \div (15a^2b^8).
[5a5b2×3a2b6]÷(15a2b8)[5a^5b^2 \times 3a^2b^6] \div (15a^2b^8).
[15a7b8]÷(15a2b8)[15a^7b^8] \div (15a^2b^8).
15a7b815a2b8=a72b88=a5b0=a5\frac{15a^7b^8}{15a^2b^8} = a^{7-2}b^{8-8} = a^5b^0 = a^5.
(d)
We are given ab=121a^b = 121, and a,ba, b are whole numbers.
Since 121=112121 = 11^2, we have a=11a=11 and b=2b=2.
We want to evaluate (a1)b+1=(111)2+1=(10)3=1000(a-1)^{b+1} = (11-1)^{2+1} = (10)^3 = 1000.

3. Final Answer

(a) w=13w=13
(b) No real solutions can be easily found. The cubic equation x33x2+8=0x^3 - 3x^2 + 8 = 0 has one real root, approximately x=1.64x = -1.64.
(c) a5a^5
(d) 10001000

Related problems in "Algebra"

The problem is to solve the equation $(x+1)^{\log(x+1)} = 100(x+1)$. It is assumed the base of the ...

LogarithmsEquationsExponentsSolving EquationsAlgebraic Manipulation
2025/4/6

The problem asks us to find the values of $k$ for which the quadratic equation $x^2 - kx + 3 - k = 0...

Quadratic EquationsDiscriminantInequalitiesReal Roots
2025/4/5

The problem states that quadrilateral $ABCD$ has a perimeter of 95 centimeters. The side lengths are...

Linear EquationsGeometryPerimeterQuadrilaterals
2025/4/5

Given that $y = 2x$ and $3^{x+y} = 27$, we need to find the value of $x$.

EquationsExponentsSubstitution
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$, and we need to...

EquationsRational ExpressionsSolving EquationsSimplificationFactorization
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$ and we need to ...

EquationsRational ExpressionsSolving for a VariableFactoring
2025/4/5

We are given the equation $\frac{3x+4}{x^2-3x+2} = \frac{A}{x-1} + \frac{B}{x-2}$ and we are asked t...

Partial FractionsAlgebraic ManipulationEquations
2025/4/5

We are given a polynomial $x^3 - 2x^2 + mx + 4$ and told that when it is divided by $x-3$, the remai...

PolynomialsRemainder TheoremAlgebraic Equations
2025/4/5

Given the quadratic equation $4x^2 - 9x - 16 = 0$, where $\alpha$ and $\beta$ are its roots, we need...

Quadratic EquationsRoots of EquationsVieta's Formulas
2025/4/5

The problem defines a binary operation $*$ such that $a * b = a^2 - b^2 + ab$, where $a$ and $b$ are...

Binary OperationsReal NumbersSquare RootsSimplification
2025/4/5