We are given the equation $\frac{\sqrt{4^{3x+1}}}{\sqrt{4^{2x+1}}} = 2$ and we need to solve for $x$.

AlgebraExponentsEquationsSimplificationSolving for x
2025/6/6

1. Problem Description

We are given the equation 43x+142x+1=2\frac{\sqrt{4^{3x+1}}}{\sqrt{4^{2x+1}}} = 2 and we need to solve for xx.

2. Solution Steps

First, we simplify the equation.
43x+142x+1=2\frac{\sqrt{4^{3x+1}}}{\sqrt{4^{2x+1}}} = 2
43x+142x+1=2\sqrt{\frac{4^{3x+1}}{4^{2x+1}}} = 2
4(3x+1)(2x+1)=2\sqrt{4^{(3x+1)-(2x+1)}} = 2
43x+12x1=2\sqrt{4^{3x+1-2x-1}} = 2
4x=2\sqrt{4^x} = 2
(4x)12=2(4^x)^{\frac{1}{2}} = 2
4x2=24^{\frac{x}{2}} = 2
(22)x2=2(2^2)^{\frac{x}{2}} = 2
22x2=22^{2 \cdot \frac{x}{2}} = 2
2x=212^x = 2^1
Since the bases are equal, the exponents must be equal.
x=1x = 1

3. Final Answer

x=1x = 1