The problem asks us to simplify the expression $\frac{(x^2+5x+4)(x-1)}{(x^2-1)}$.

AlgebraAlgebraic SimplificationPolynomialsFactorizationRational Expressions
2025/6/6

1. Problem Description

The problem asks us to simplify the expression (x2+5x+4)(x1)(x21)\frac{(x^2+5x+4)(x-1)}{(x^2-1)}.

2. Solution Steps

First, we factor the quadratic expressions in the numerator and denominator.
x2+5x+4=(x+1)(x+4)x^2 + 5x + 4 = (x+1)(x+4)
x21=(x1)(x+1)x^2 - 1 = (x-1)(x+1)
Substituting these factorizations into the expression yields:
(x2+5x+4)(x1)(x21)=(x+1)(x+4)(x1)(x1)(x+1)\frac{(x^2+5x+4)(x-1)}{(x^2-1)} = \frac{(x+1)(x+4)(x-1)}{(x-1)(x+1)}
Now we can cancel out the common factors (x+1)(x+1) and (x1)(x-1) from the numerator and denominator, provided x1x \ne 1 and x1x \ne -1.
(x+1)(x+4)(x1)(x1)(x+1)=x+4\frac{(x+1)(x+4)(x-1)}{(x-1)(x+1)} = x+4

3. Final Answer

x+4x+4