First, we can factor out the common term (2x+7) from both terms in the expression: 9x2(2x+7)−12x(2x+7)=(2x+7)(9x2−12x) Next, we can factor out the common term 3x from the second factor (9x2−12x): 9x2−12x=3x(3x−4) Therefore,
(2x+7)(9x2−12x)=(2x+7)(3x(3x−4)) Rearrange the terms to get:
3x(2x+7)(3x−4) Now, we can expand the expression:
3x(2x+7)(3x−4)=3x(6x2−8x+21x−28)=3x(6x2+13x−28) Finally, we distribute the 3x term: 3x(6x2+13x−28)=18x3+39x2−84x