与えられた式 $(x + y)^2 - 8(x + y) + 15$ を因数分解します。

代数学因数分解多項式式の展開
2025/4/17

1. 問題の内容

与えられた式 (x+y)28(x+y)+15(x + y)^2 - 8(x + y) + 15 を因数分解します。

2. 解き方の手順

x+yx+yAA と置きます。すると、与えられた式は A28A+15A^2 - 8A + 15 となります。
この式を因数分解します。
A28A+15=(A3)(A5)A^2 - 8A + 15 = (A-3)(A-5)
ここで、A=x+yA = x + y を代入して元に戻します。
(A3)(A5)=(x+y3)(x+y5)(A-3)(A-5) = (x+y-3)(x+y-5)

3. 最終的な答え

(x+y3)(x+y5)(x+y-3)(x+y-5)

「代数学」の関連問題

与えられた6つの式を展開して簡単にすること。

展開二項の平方和と差の積多項式
2025/4/18

与えられた3つの2次式を複素数の範囲で因数分解します。 (1) $x^2 - 3x - 2$ (2) $2x^2 - 2x - 3$ (3) $x^2 + 4x + 6$

因数分解二次方程式複素数
2025/4/18

2次方程式 $x^2 - 3x - 1 = 0$ の2つの解を $\alpha, \beta$ とするとき、次の2つの場合について、指定された数を解とする2次方程式を1つ作成します。 (1) $1-\...

二次方程式解と係数の関係解の和と積
2025/4/18

2つの問題があります。 (1) 和が-2、積が6となる2つの数を求めます。 (2) 和と積がともに3となる2つの数を求めます。

二次方程式解の公式複素数
2025/4/18

与えられた方程式 $x + 6 = 4x - 9$ を解いて、$x$ の値を求める。

一次方程式方程式代数
2025/4/18

一次方程式 $5x - 2 = 3$ を解いて、$x$ の値を求めます。

一次方程式方程式代数
2025/4/18

一次方程式 $5x - 2 = 3$ を解いて、$x$の値を求める問題です。

一次方程式方程式の解法代数
2025/4/18

与えられた式 $a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)$ を簡略化せよ。

式の簡略化因数分解多項式
2025/4/18

与えられた2つの関数 $y$ を簡単にします。 最初の関数は $y = x^2 x^3$ で、2番目の関数は $y = \frac{1}{\sqrt[3]{x^4}}$ です。

指数法則関数の簡約化累乗根
2025/4/18

与えられた数式を簡略化します。問題は以下の2つです。 (1) $y = x^2x^3$ (2) $y = \frac{1}{\sqrt[3]{x^4}}$

指数法則代数数式簡略化累乗根
2025/4/18