The problem is to solve the following system of linear equations: $\frac{2}{3}x - y = 2$ $3x - \frac{3}{4}y = 24$

AlgebraLinear EquationsSystems of EquationsSubstitutionElimination
2025/3/17

1. Problem Description

The problem is to solve the following system of linear equations:
23xy=2\frac{2}{3}x - y = 2
3x34y=243x - \frac{3}{4}y = 24

2. Solution Steps

First, let's rewrite the equations:
Equation (1): 23xy=2\frac{2}{3}x - y = 2
Equation (2): 3x34y=243x - \frac{3}{4}y = 24
Multiply equation (1) by 34-\frac{3}{4}:
34(23xy)=342-\frac{3}{4} * (\frac{2}{3}x - y) = -\frac{3}{4} * 2
12x+34y=32-\frac{1}{2}x + \frac{3}{4}y = -\frac{3}{2}
Now we have the following system:
12x+34y=32-\frac{1}{2}x + \frac{3}{4}y = -\frac{3}{2}
3x34y=243x - \frac{3}{4}y = 24
Add the two equations:
(3x12x)+(34y34y)=2432(3x - \frac{1}{2}x) + (\frac{3}{4}y - \frac{3}{4}y) = 24 - \frac{3}{2}
52x=48232\frac{5}{2}x = \frac{48}{2} - \frac{3}{2}
52x=452\frac{5}{2}x = \frac{45}{2}
x=45225x = \frac{45}{2} * \frac{2}{5}
x=9x = 9
Substitute x=9x = 9 into equation (1):
23(9)y=2\frac{2}{3}(9) - y = 2
6y=26 - y = 2
y=62y = 6 - 2
y=4y = 4
So the solution is (x,y)=(9,4)(x, y) = (9, 4).

3. Final Answer

The solution to the system is (9, 4).