Simplify the expression $\frac{(-2a^2b^4)^2}{12a^3b^2}$.AlgebraExponentsSimplificationAlgebraic Expressions2025/4/211. Problem DescriptionSimplify the expression (−2a2b4)212a3b2\frac{(-2a^2b^4)^2}{12a^3b^2}12a3b2(−2a2b4)2.2. Solution StepsFirst, we simplify the numerator:(−2a2b4)2=(−2)2(a2)2(b4)2(-2a^2b^4)^2 = (-2)^2(a^2)^2(b^4)^2(−2a2b4)2=(−2)2(a2)2(b4)2=4a2∗2b4∗2= 4a^{2*2}b^{4*2}=4a2∗2b4∗2=4a4b8= 4a^4b^8=4a4b8So, the expression becomes 4a4b812a3b2\frac{4a^4b^8}{12a^3b^2}12a3b24a4b8.Now, simplify the fraction:412=13\frac{4}{12} = \frac{1}{3}124=31a4a3=a4−3=a1=a\frac{a^4}{a^3} = a^{4-3} = a^1 = aa3a4=a4−3=a1=ab8b2=b8−2=b6\frac{b^8}{b^2} = b^{8-2} = b^6b2b8=b8−2=b6Therefore, 4a4b812a3b2=13ab6\frac{4a^4b^8}{12a^3b^2} = \frac{1}{3}ab^612a3b24a4b8=31ab6.3. Final Answer13ab6\frac{1}{3}ab^631ab6