First, recall that dividing by a fraction is the same as multiplying by its reciprocal. Thus, we have:
70st2(s−2t)−18s5t(7s+3)÷42s3t3(2t−s)30s2t4(3+7s)=70st2(s−2t)−18s5t(7s+3)⋅30s2t4(3+7s)42s3t3(2t−s) We can rearrange the expression to group like terms together:
=70−18⋅3042⋅ss5⋅s2s3⋅t2t⋅t4t3⋅(7s+3)(7s+3)⋅(s−2t)(2t−s) Simplify the numerical coefficients:
70−18⋅3042=35−9⋅57=35⋅5−9⋅7=5⋅7⋅5−9⋅7=25−9 Simplify the powers of s:
ss5⋅s2s3=s5−1⋅s3−2=s4⋅s1=s5 Simplify the powers of t:
t2t⋅t4t3=t1−2⋅t3−4=t−1⋅t−1=t−2=t21 Simplify the expressions in parenthesis:
(7s+3)(7s+3)=1 (s−2t)(2t−s)=(s−2t)−(s−2t)=−1 Therefore we have:
25−9⋅s5⋅t21⋅1⋅(−1)=25t29s5