First, we expand (x−3)2 using the formula (a−b)2=a2−2ab+b2: (x−3)2=x2−2(x)(3)+32=x2−6x+9 Next, we expand (x+4)(x−4) using the difference of squares formula (a+b)(a−b)=a2−b2: (x+4)(x−4)=x2−42=x2−16 Now, substitute these expressions back into the original expression:
(x−3)2−(x+4)(x−4)=(x2−6x+9)−(x2−16) Distribute the negative sign:
x2−6x+9−x2+16 Combine like terms:
(x2−x2)−6x+(9+16)=0x2−6x+25=−6x+25