First, we simplify the term (−3ab)2. Recall the power of a product rule: (xy)n=xnyn. (−3ab)2=(−3)2×a2×b2=9a2b2 Now, we substitute this result into the original expression:
9a2b2×4a÷a3b The expression becomes:
9a2b2×4a÷a3b=a3b9a2b2×4a Multiply the numerator:
9a2b2×4a=36a3b2 So, the expression now looks like:
a3b36a3b2 We can now simplify the expression by dividing:
a3b36a3b2=36×a3a3×bb2 Recall the quotient of powers rule: xnxm=xm−n. a3a3=a3−3=a0=1 bb2=b2−1=b1=b Thus, we have:
36×1×b=36b