Simplify the expression $(-3ab)^2 \times 4a \div a^3b$.

AlgebraAlgebraic simplificationExponentsVariablesOrder of operations
2025/3/17

1. Problem Description

Simplify the expression (3ab)2×4a÷a3b(-3ab)^2 \times 4a \div a^3b.

2. Solution Steps

First, we simplify the term (3ab)2(-3ab)^2. Recall the power of a product rule: (xy)n=xnyn(xy)^n = x^n y^n.
(3ab)2=(3)2×a2×b2=9a2b2(-3ab)^2 = (-3)^2 \times a^2 \times b^2 = 9a^2b^2
Now, we substitute this result into the original expression:
9a2b2×4a÷a3b9a^2b^2 \times 4a \div a^3b
The expression becomes:
9a2b2×4a÷a3b=9a2b2×4aa3b9a^2b^2 \times 4a \div a^3b = \frac{9a^2b^2 \times 4a}{a^3b}
Multiply the numerator:
9a2b2×4a=36a3b29a^2b^2 \times 4a = 36a^3b^2
So, the expression now looks like:
36a3b2a3b\frac{36a^3b^2}{a^3b}
We can now simplify the expression by dividing:
36a3b2a3b=36×a3a3×b2b\frac{36a^3b^2}{a^3b} = 36 \times \frac{a^3}{a^3} \times \frac{b^2}{b}
Recall the quotient of powers rule: xmxn=xmn\frac{x^m}{x^n} = x^{m-n}.
a3a3=a33=a0=1\frac{a^3}{a^3} = a^{3-3} = a^0 = 1
b2b=b21=b1=b\frac{b^2}{b} = b^{2-1} = b^1 = b
Thus, we have:
36×1×b=36b36 \times 1 \times b = 36b

3. Final Answer

36b36b

Related problems in "Algebra"