Solve the inequality $\cos(\frac{1}{2}\theta - \frac{\pi}{3}) \le \frac{1}{\sqrt{2}}$.

AnalysisTrigonometryInequalitiesTrigonometric InequalitiesIntervals
2025/4/22

1. Problem Description

Solve the inequality cos(12θπ3)12\cos(\frac{1}{2}\theta - \frac{\pi}{3}) \le \frac{1}{\sqrt{2}}.

2. Solution Steps

First, we know that cos(π4)=12\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}.
The inequality cos(x)12\cos(x) \le \frac{1}{\sqrt{2}} implies that xx is in the interval [π4,2ππ4][\frac{\pi}{4}, 2\pi - \frac{\pi}{4}] or more generally [π4+2kπ,7π4+2kπ][ \frac{\pi}{4} + 2k\pi, \frac{7\pi}{4} + 2k\pi] for any integer kk. Thus we have
π4+2kπ12θπ37π4+2kπ\frac{\pi}{4} + 2k\pi \le \frac{1}{2}\theta - \frac{\pi}{3} \le \frac{7\pi}{4} + 2k\pi.
Add π3\frac{\pi}{3} to all parts of the inequality:
π4+π3+2kπ12θ7π4+π3+2kπ\frac{\pi}{4} + \frac{\pi}{3} + 2k\pi \le \frac{1}{2}\theta \le \frac{7\pi}{4} + \frac{\pi}{3} + 2k\pi
3π+4π12+2kπ12θ21π+4π12+2kπ\frac{3\pi + 4\pi}{12} + 2k\pi \le \frac{1}{2}\theta \le \frac{21\pi + 4\pi}{12} + 2k\pi
7π12+2kπ12θ25π12+2kπ\frac{7\pi}{12} + 2k\pi \le \frac{1}{2}\theta \le \frac{25\pi}{12} + 2k\pi
Multiply all parts of the inequality by 2:
7π6+4kπθ25π6+4kπ\frac{7\pi}{6} + 4k\pi \le \theta \le \frac{25\pi}{6} + 4k\pi.
For k=0k=0, we have 7π6θ25π6\frac{7\pi}{6} \le \theta \le \frac{25\pi}{6}.
Since θ\theta is typically defined between 00 and 2π2\pi, we need to find the angles between 00 and 2π2\pi.
We want to express the solution within the interval [0,2π)[0, 2\pi).
The inequality is 7π6+4kπθ25π6+4kπ\frac{7\pi}{6} + 4k\pi \le \theta \le \frac{25\pi}{6} + 4k\pi.
If k=0k=0, 7π6θ25π6\frac{7\pi}{6} \le \theta \le \frac{25\pi}{6}.
However, we need θ[0,2π)\theta \in [0, 2\pi).
So, 7π6θ25π6\frac{7\pi}{6} \le \theta \le \frac{25\pi}{6}
Also note that 25π6=4π+π6\frac{25\pi}{6} = 4\pi + \frac{\pi}{6}, so 25π6\frac{25\pi}{6} is larger than 2π2\pi, so we need to consider values when k=1k = -1.
If k=1k=-1, 7π64πθ25π64π\frac{7\pi}{6} - 4\pi \le \theta \le \frac{25\pi}{6} - 4\pi
7π24π6θ25π24π6\frac{7\pi - 24\pi}{6} \le \theta \le \frac{25\pi - 24\pi}{6}
17π6θπ6\frac{-17\pi}{6} \le \theta \le \frac{\pi}{6}.
Since we want θ[0,2π)\theta \in [0, 2\pi), θ\theta must be in the interval [7π6,2π)[0,π6][\frac{7\pi}{6}, 2\pi) \cup [0, \frac{\pi}{6}] so consider k=0k=0, 7π6θ25π6\frac{7\pi}{6} \le \theta \le \frac{25\pi}{6}.
We can consider θ[0,2π]\theta \in [0,2\pi].
7π6θ2π\frac{7\pi}{6} \le \theta \le 2\pi, 7π6θ12π6\frac{7\pi}{6} \le \theta \le \frac{12\pi}{6}, so θ[7π6,12π6]\theta \in [\frac{7\pi}{6}, \frac{12\pi}{6}]
and 0θπ60 \le \theta \le \frac{\pi}{6}.
Thus θ[0,π6][7π6,2π]\theta \in [0, \frac{\pi}{6}] \cup [\frac{7\pi}{6}, 2\pi].

3. Final Answer

[0,π6][7π6,2π][0, \frac{\pi}{6}] \cup [\frac{7\pi}{6}, 2\pi]

Related problems in "Analysis"

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^...

Definite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24

The problem asks to solve the second-order differential equation $y'' = 20x^3$.

Differential EquationsSecond-Order Differential EquationsIntegrationGeneral Solution
2025/4/24

The problem is to find the second derivative of the function $y = 20x^3$. We need to find $y''$.

DifferentiationPower RuleSecond DerivativeCalculus
2025/4/24

The problem is to solve the differential equation $y''' = 20x^3$.

Differential EquationsIntegration
2025/4/24

We are given a graph of a function and asked to find information about the reciprocal of this functi...

CalculusFunction AnalysisDerivativesAsymptotesMaxima and MinimaGraphing
2025/4/23

The problem asks us to find the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$, and to d...

LimitsAsymptotesRational FunctionsCalculus
2025/4/23

The problem asks for the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$ and the sign of ...

LimitsVertical AsymptotesRational FunctionsCalculus
2025/4/23

The problem asks us to determine what types of asymptotes the function $f(x) = \frac{3x^3 + 2x^2 + x...

AsymptotesRational FunctionsVertical AsymptotesOblique AsymptotesPolynomial Long Division
2025/4/23

The problem defines a function $f(x) = x + \frac{1}{x}$. It asks us to: 1. Determine the domain $D_...

FunctionsDomainOdd FunctionsCalculusDerivativesMonotonicityVariation Table
2025/4/23

The problem asks us to evaluate several integrals and then to perform a partial fraction decompositi...

IntegrationDefinite IntegralsPartial FractionsSubstitutionTrigonometric Functions
2025/4/23