The problem asks us to evaluate several integrals and then to perform a partial fraction decomposition and evaluate the resulting integral. Specifically, we need to evaluate: i. $\int \frac{x^3}{x+1} dx$ ii. $\int (3x+5)^{-2} dx$ iii. $\int \cos(4x) e^{\sin(4x)} dx$ iv. $\int \frac{1}{x^2 - 6x + 16} dx$ v. $\int \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} dx$ vi. $\int (x-1) \cot(x^2-2x-1) dx$ And for the second problem: Given $\frac{3x+7}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$, find $A$ and $B$, and hence evaluate $\int \frac{3x+7}{(x-1)(x+2)} dx$.
2025/4/23
1. Problem Description
The problem asks us to evaluate several integrals and then to perform a partial fraction decomposition and evaluate the resulting integral. Specifically, we need to evaluate:
i.
ii.
iii.
iv.
v.
vi.
And for the second problem:
Given , find and , and hence evaluate .
2. Solution Steps
i. :
We can perform polynomial long division to get .
So .
.
ii. :
Let . Then , so .
.
iii. :
Let . Then , so .
.
iv. :
Complete the square: .
.
Let , so . Then .
v. :
Let . Then .
.
vi. :
Let . Then , so .
.
Let , so .
.
For the second problem:
.
.
If , , so , and .
If , , so , and .
.
3. Final Answer
i.
ii.
iii.
iv.
v.
vi.
,