The problem asks us to evaluate several integrals and then to perform a partial fraction decomposition and evaluate the resulting integral. Specifically, we need to evaluate: i. $\int \frac{x^3}{x+1} dx$ ii. $\int (3x+5)^{-2} dx$ iii. $\int \cos(4x) e^{\sin(4x)} dx$ iv. $\int \frac{1}{x^2 - 6x + 16} dx$ v. $\int \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} dx$ vi. $\int (x-1) \cot(x^2-2x-1) dx$ And for the second problem: Given $\frac{3x+7}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$, find $A$ and $B$, and hence evaluate $\int \frac{3x+7}{(x-1)(x+2)} dx$.

AnalysisIntegrationDefinite IntegralsPartial FractionsSubstitutionTrigonometric Functions
2025/4/23

1. Problem Description

The problem asks us to evaluate several integrals and then to perform a partial fraction decomposition and evaluate the resulting integral. Specifically, we need to evaluate:
i. x3x+1dx\int \frac{x^3}{x+1} dx
ii. (3x+5)2dx\int (3x+5)^{-2} dx
iii. cos(4x)esin(4x)dx\int \cos(4x) e^{\sin(4x)} dx
iv. 1x26x+16dx\int \frac{1}{x^2 - 6x + 16} dx
v. sin1(x)1x2dx\int \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} dx
vi. (x1)cot(x22x1)dx\int (x-1) \cot(x^2-2x-1) dx
And for the second problem:
Given 3x+7(x1)(x+2)=Ax1+Bx+2\frac{3x+7}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}, find AA and BB, and hence evaluate 3x+7(x1)(x+2)dx\int \frac{3x+7}{(x-1)(x+2)} dx.

2. Solution Steps

i. x3x+1dx\int \frac{x^3}{x+1} dx:
We can perform polynomial long division to get x3=(x+1)(x2x+1)1x^3 = (x+1)(x^2 - x + 1) - 1.
So x3x+1=x2x+11x+1\frac{x^3}{x+1} = x^2 - x + 1 - \frac{1}{x+1}.
x3x+1dx=(x2x+11x+1)dx=x33x22+xlnx+1+C\int \frac{x^3}{x+1} dx = \int (x^2 - x + 1 - \frac{1}{x+1}) dx = \frac{x^3}{3} - \frac{x^2}{2} + x - \ln|x+1| + C.
ii. (3x+5)2dx\int (3x+5)^{-2} dx:
Let u=3x+5u = 3x+5. Then du=3dxdu = 3 dx, so dx=13dudx = \frac{1}{3} du.
(3x+5)2dx=u213du=13u2du=13u11+C=13u+C=13(3x+5)+C\int (3x+5)^{-2} dx = \int u^{-2} \frac{1}{3} du = \frac{1}{3} \int u^{-2} du = \frac{1}{3} \frac{u^{-1}}{-1} + C = -\frac{1}{3u} + C = -\frac{1}{3(3x+5)} + C.
iii. cos(4x)esin(4x)dx\int \cos(4x) e^{\sin(4x)} dx:
Let u=sin(4x)u = \sin(4x). Then du=4cos(4x)dxdu = 4\cos(4x) dx, so cos(4x)dx=14du\cos(4x) dx = \frac{1}{4} du.
cos(4x)esin(4x)dx=eu14du=14eudu=14eu+C=14esin(4x)+C\int \cos(4x) e^{\sin(4x)} dx = \int e^u \frac{1}{4} du = \frac{1}{4} \int e^u du = \frac{1}{4} e^u + C = \frac{1}{4} e^{\sin(4x)} + C.
iv. 1x26x+16dx\int \frac{1}{x^2 - 6x + 16} dx:
Complete the square: x26x+16=(x26x+9)+7=(x3)2+7x^2 - 6x + 16 = (x^2 - 6x + 9) + 7 = (x-3)^2 + 7.
1x26x+16dx=1(x3)2+7dx\int \frac{1}{x^2 - 6x + 16} dx = \int \frac{1}{(x-3)^2 + 7} dx.
Let u=x3u = x-3, so du=dxdu = dx. Then 1u2+7du=17arctan(u7)+C=17arctan(x37)+C\int \frac{1}{u^2 + 7} du = \frac{1}{\sqrt{7}} \arctan(\frac{u}{\sqrt{7}}) + C = \frac{1}{\sqrt{7}} \arctan(\frac{x-3}{\sqrt{7}}) + C.
v. sin1(x)1x2dx\int \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} dx:
Let u=sin1(x)u = \sin^{-1}(x). Then du=11x2dxdu = \frac{1}{\sqrt{1-x^2}} dx.
sin1(x)1x2dx=udu=u22+C=(sin1(x))22+C\int \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} dx = \int u du = \frac{u^2}{2} + C = \frac{(\sin^{-1}(x))^2}{2} + C.
vi. (x1)cot(x22x1)dx\int (x-1) \cot(x^2-2x-1) dx:
Let u=x22x1u = x^2-2x-1. Then du=(2x2)dx=2(x1)dxdu = (2x-2) dx = 2(x-1) dx, so (x1)dx=12du(x-1) dx = \frac{1}{2} du.
(x1)cot(x22x1)dx=cot(u)12du=12cot(u)du=12cos(u)sin(u)du\int (x-1) \cot(x^2-2x-1) dx = \int \cot(u) \frac{1}{2} du = \frac{1}{2} \int \cot(u) du = \frac{1}{2} \int \frac{\cos(u)}{\sin(u)} du.
Let v=sin(u)v = \sin(u), so dv=cos(u)dudv = \cos(u) du.
121vdv=12lnv+C=12lnsin(u)+C=12lnsin(x22x1)+C\frac{1}{2} \int \frac{1}{v} dv = \frac{1}{2} \ln|v| + C = \frac{1}{2} \ln|\sin(u)| + C = \frac{1}{2} \ln|\sin(x^2-2x-1)| + C.
For the second problem:
3x+7(x1)(x+2)=Ax1+Bx+2\frac{3x+7}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}.
3x+7=A(x+2)+B(x1)3x+7 = A(x+2) + B(x-1).
If x=1x = 1, 3(1)+7=A(1+2)+B(11)3(1) + 7 = A(1+2) + B(1-1), so 10=3A10 = 3A, and A=103A = \frac{10}{3}.
If x=2x = -2, 3(2)+7=A(2+2)+B(21)3(-2) + 7 = A(-2+2) + B(-2-1), so 1=3B1 = -3B, and B=13B = -\frac{1}{3}.
3x+7(x1)(x+2)dx=(10/3x11/3x+2)dx=1031x1dx131x+2dx=103lnx113lnx+2+C\int \frac{3x+7}{(x-1)(x+2)} dx = \int (\frac{10/3}{x-1} - \frac{1/3}{x+2}) dx = \frac{10}{3} \int \frac{1}{x-1} dx - \frac{1}{3} \int \frac{1}{x+2} dx = \frac{10}{3} \ln|x-1| - \frac{1}{3} \ln|x+2| + C.

3. Final Answer

i. x33x22+xlnx+1+C\frac{x^3}{3} - \frac{x^2}{2} + x - \ln|x+1| + C
ii. 13(3x+5)+C-\frac{1}{3(3x+5)} + C
iii. 14esin(4x)+C\frac{1}{4} e^{\sin(4x)} + C
iv. 17arctan(x37)+C\frac{1}{\sqrt{7}} \arctan(\frac{x-3}{\sqrt{7}}) + C
v. (sin1(x))22+C\frac{(\sin^{-1}(x))^2}{2} + C
vi. 12lnsin(x22x1)+C\frac{1}{2} \ln|\sin(x^2-2x-1)| + C
A=103A = \frac{10}{3}, B=13B = -\frac{1}{3}
3x+7(x1)(x+2)dx=103lnx113lnx+2+C\int \frac{3x+7}{(x-1)(x+2)} dx = \frac{10}{3} \ln|x-1| - \frac{1}{3} \ln|x+2| + C

Related problems in "Analysis"

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^...

Definite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24

The problem asks to solve the second-order differential equation $y'' = 20x^3$.

Differential EquationsSecond-Order Differential EquationsIntegrationGeneral Solution
2025/4/24

The problem is to find the second derivative of the function $y = 20x^3$. We need to find $y''$.

DifferentiationPower RuleSecond DerivativeCalculus
2025/4/24

The problem is to solve the differential equation $y''' = 20x^3$.

Differential EquationsIntegration
2025/4/24

We are given a graph of a function and asked to find information about the reciprocal of this functi...

CalculusFunction AnalysisDerivativesAsymptotesMaxima and MinimaGraphing
2025/4/23

The problem asks us to find the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$, and to d...

LimitsAsymptotesRational FunctionsCalculus
2025/4/23

The problem asks for the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$ and the sign of ...

LimitsVertical AsymptotesRational FunctionsCalculus
2025/4/23

The problem asks us to determine what types of asymptotes the function $f(x) = \frac{3x^3 + 2x^2 + x...

AsymptotesRational FunctionsVertical AsymptotesOblique AsymptotesPolynomial Long Division
2025/4/23

The problem defines a function $f(x) = x + \frac{1}{x}$. It asks us to: 1. Determine the domain $D_...

FunctionsDomainOdd FunctionsCalculusDerivativesMonotonicityVariation Table
2025/4/23

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

Improper IntegralsConvergenceDivergenceIntegration Techniques
2025/4/23