The problem consists of several parts: Question 1 asks to find the derivatives of $f(x) = x^3$ and $g(x) = \sqrt{9-x}$ using the limit definition. Question 2 involves several sub-problems. 2.1 requires proving a derivative formula for $sec^{-1}x$. 2.2 deals with optimizing the area enclosed by a square and an equilateral triangle formed from a 10m wire. 2.3 is a Newton's Law of Cooling problem to determine time of death. 2.4 asks us to differentiate $y = cosh^{-1}(sinh x)$. Question 3 contains five definite integrals to evaluate. (a) $\int \frac{cos(lnx)}{x} dx$ (b) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ (c) $\int_{0}^{\frac{\pi}{2}} \frac{cosx}{1+sin^2x} dx$ (d) $\int_{\frac{1}{2}}^{1} \frac{cos(x^{-2})}{x^3} dx$ (e) $\int_{\sqrt{2}}^{2} \frac{1}{x\sqrt{x^2-1}} dx$

AnalysisDerivativesLimitsOptimizationNewton's Law of CoolingIntegralsSubstitutionDefinite IntegralsInverse Trigonometric FunctionsHyperbolic Functions
2025/6/6

1. Problem Description

The problem consists of several parts:
Question 1 asks to find the derivatives of f(x)=x3f(x) = x^3 and g(x)=9xg(x) = \sqrt{9-x} using the limit definition.
Question 2 involves several sub-problems. 2.1 requires proving a derivative formula for sec1xsec^{-1}x. 2.2 deals with optimizing the area enclosed by a square and an equilateral triangle formed from a 10m wire. 2.3 is a Newton's Law of Cooling problem to determine time of death. 2.4 asks us to differentiate y=cosh1(sinhx)y = cosh^{-1}(sinh x).
Question 3 contains five definite integrals to evaluate.
(a) cos(lnx)xdx\int \frac{cos(lnx)}{x} dx
(b) exxdx\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx
(c) 0π2cosx1+sin2xdx\int_{0}^{\frac{\pi}{2}} \frac{cosx}{1+sin^2x} dx
(d) 121cos(x2)x3dx\int_{\frac{1}{2}}^{1} \frac{cos(x^{-2})}{x^3} dx
(e) 221xx21dx\int_{\sqrt{2}}^{2} \frac{1}{x\sqrt{x^2-1}} dx

2. Solution Steps

Question 1:
(a) f(x)=x3f(x) = x^3
f(x)=limh0f(x+h)f(x)h=limh0(x+h)3x3h=limh0x3+3x2h+3xh2+h3x3h=limh03x2h+3xh2+h3h=limh0(3x2+3xh+h2)=3x2f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h\to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} = \lim_{h\to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h\to 0} (3x^2 + 3xh + h^2) = 3x^2
(b) g(x)=9xg(x) = \sqrt{9-x}
g(x)=limh0g(x+h)g(x)h=limh09(x+h)9xhg'(x) = \lim_{h\to 0} \frac{g(x+h)-g(x)}{h} = \lim_{h\to 0} \frac{\sqrt{9-(x+h)} - \sqrt{9-x}}{h}
Multiply by conjugate: limh09(x+h)9xh9(x+h)+9x9(x+h)+9x=limh09xh(9x)h(9(x+h)+9x)=limh0hh(9(x+h)+9x)=limh019(x+h)+9x=129x\lim_{h\to 0} \frac{\sqrt{9-(x+h)} - \sqrt{9-x}}{h} \cdot \frac{\sqrt{9-(x+h)} + \sqrt{9-x}}{\sqrt{9-(x+h)} + \sqrt{9-x}} = \lim_{h\to 0} \frac{9-x-h - (9-x)}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{-h}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{-1}{\sqrt{9-(x+h)} + \sqrt{9-x}} = \frac{-1}{2\sqrt{9-x}}
Question 2:
2.1
Let y=sec1xy = sec^{-1}x, then x=secyx = secy. Differentiating with respect to xx:
1=secytanydydx1 = secy\cdot tany \cdot \frac{dy}{dx}.
So, dydx=1secytany=1secysec2y1=1xx21\frac{dy}{dx} = \frac{1}{secy\cdot tany} = \frac{1}{secy \sqrt{sec^2y - 1}} = \frac{1}{x\sqrt{x^2-1}}. Since we are given that x>1|x| > 1.
2.2
Let xx be the length of wire used for the square, and 10x10-x be the length used for the equilateral triangle.
Side of square: x/4x/4. Area of square: (x/4)2=x2/16(x/4)^2 = x^2/16.
Side of triangle: (10x)/3(10-x)/3. Area of triangle: 34(10x3)2=336(10x)2\frac{\sqrt{3}}{4} (\frac{10-x}{3})^2 = \frac{\sqrt{3}}{36} (10-x)^2.
Total Area: A(x)=x216+336(10x)2A(x) = \frac{x^2}{16} + \frac{\sqrt{3}}{36}(10-x)^2
A(x)=2x16+2336(10x)(1)=x8318(10x)A'(x) = \frac{2x}{16} + \frac{2\sqrt{3}}{36}(10-x)(-1) = \frac{x}{8} - \frac{\sqrt{3}}{18}(10-x)
Set A(x)=0A'(x) = 0: x8=318(10x)    18x=83(10x)    18x=80383x    x(18+83)=803    x=80318+83=4039+434.35m\frac{x}{8} = \frac{\sqrt{3}}{18}(10-x) \implies 18x = 8\sqrt{3}(10-x) \implies 18x = 80\sqrt{3} - 8\sqrt{3}x \implies x(18+8\sqrt{3}) = 80\sqrt{3} \implies x = \frac{80\sqrt{3}}{18+8\sqrt{3}} = \frac{40\sqrt{3}}{9+4\sqrt{3}} \approx 4.35 m.
A(x)=18+318>0A''(x) = \frac{1}{8} + \frac{\sqrt{3}}{18} > 0. Thus, this is a minimum.
To find the maximum, test endpoints: x=0x = 0 or x=10x=10.
A(0)=336(100)=25394.81A(0) = \frac{\sqrt{3}}{36}(100) = \frac{25\sqrt{3}}{9} \approx 4.81
A(10)=10016=254=6.25A(10) = \frac{100}{16} = \frac{25}{4} = 6.25
(a) Maximum when all wire is used for the square (x=10).
(b) Minimum when x4.35x \approx 4.35.
2.3
Newton's Law of Cooling: T(t)=Ts+(T0Ts)ektT(t) = T_s + (T_0 - T_s)e^{-kt}, where T(t)T(t) is the temperature at time tt, TsT_s is the surrounding temperature, T0T_0 is the initial temperature, and kk is a constant.
We have Ts=20T_s = 20. Let t=0t=0 be 1:30 PM. Then T(0)=32.5T(0) = 32.5 and T(1)=30.3T(1) = 30.3.
32.5=20+(3720)ek(0)    12.5=1732.5 = 20 + (37-20)e^{-k(0)} \implies 12.5 = 17, which is wrong.
The initial temperature of the body should be
3

7. $32.5 = 20 + (37-20)e^{-kt} \implies 12.5 = 17e^{-kt}$

30.3=20+(3720)ek(t+1)    10.3=17ek(t+1)30.3 = 20 + (37-20)e^{-k(t+1)} \implies 10.3 = 17e^{-k(t+1)}
12.517=ekt\frac{12.5}{17} = e^{-kt} and 10.317=ek(t+1)=ektek\frac{10.3}{17} = e^{-k(t+1)} = e^{-kt}e^{-k}
10.317=12.517ek    10.312.5=ek    k=ln(10.312.5)0.1954\frac{10.3}{17} = \frac{12.5}{17}e^{-k} \implies \frac{10.3}{12.5} = e^{-k} \implies k = -ln(\frac{10.3}{12.5}) \approx 0.1954
12.517=e0.1954t    ln(12.517)=0.1954t    t=ln(12.517)0.19541.525\frac{12.5}{17} = e^{-0.1954t} \implies ln(\frac{12.5}{17}) = -0.1954t \implies t = \frac{ln(\frac{12.5}{17})}{-0.1954} \approx 1.525 hours.

1. 525 hours is about 1 hour and 31.5 minutes. Thus, the murder occurred approximately 1 hour and 31.5 minutes before 1:30 PM, which is about 11:58:30 AM.

2.4
y=cosh1(sinhx)y = cosh^{-1}(sinh x)
dydx=1(sinhx)21coshx=coshxsinh2x1\frac{dy}{dx} = \frac{1}{\sqrt{(sinh x)^2 - 1}} \cdot cosh x = \frac{cosh x}{\sqrt{sinh^2 x - 1}}.
Since cosh2xsinh2x=1cosh^2 x - sinh^2 x = 1, we have cosh2x=sinh2x+1cosh^2 x = sinh^2 x + 1
So we should have
dydx=1sinh2x+11coshx=1sinh2xcoshx=coshxcoshx=1sinh2xcosh(x)=coshxsinh2x=cosh(x)sinh(x)\frac{dy}{dx} = \frac{1}{\sqrt{sinh^2 x + 1 - 1}} \cdot cosh x = \frac{1}{\sqrt{sinh^2 x}} \cdot cosh x = \frac{cosh x}{cosh x} = \frac{1}{\sqrt{sinh^2x}} cosh(x) = \frac{cosh x}{\sqrt{sinh^2x}}=\frac{cosh(x)}{|sinh(x)|}.
However, the inverse hyperbolic cosine is only defined for arguments greater than or equal to 1, so sinh(x)>=1sinh(x)>=1. Also the hyperbolic cosine is always positive.
$\frac{dy}{dx} = \frac{1}{\sqrt{sinh^2(x) + 1 - 1}} \cdot cosh x = \frac{cosh(x)}{|cosh(x)|} = \frac{cosh(x)}{\sqrt{sinh^2(x) + 1}} = \frac{1}{\sqrt{1 + sinh^2(x) -1}}coshx = \frac{cosh(x)}{\sqrt{sinh^2x}} = \frac{coshx}{|sinhx|}= 1 if sinhx > 0 else -1
Question 3:
(a) cos(lnx)xdx\int \frac{cos(lnx)}{x} dx. Let u=lnxu = lnx, then du=1xdxdu = \frac{1}{x} dx.
So, cos(u)du=sin(u)+C=sin(lnx)+C\int cos(u) du = sin(u) + C = sin(lnx) + C.
(b) exxdx\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx. Let u=xu = \sqrt{x}, then du=12xdx    2du=1xdxdu = \frac{1}{2\sqrt{x}}dx \implies 2du = \frac{1}{\sqrt{x}} dx.
So, eu2du=2eu+C=2ex+C\int e^u 2du = 2e^u + C = 2e^{\sqrt{x}} + C.
(c) 0π2cosx1+sin2xdx\int_{0}^{\frac{\pi}{2}} \frac{cosx}{1+sin^2x} dx. Let u=sinxu = sinx, then du=cosxdxdu = cosx dx. When x=0x=0, u=0u=0. When x=π2x=\frac{\pi}{2}, u=1u=1.
So, 0111+u2du=[arctan(u)]01=arctan(1)arctan(0)=π40=π4\int_{0}^{1} \frac{1}{1+u^2} du = [arctan(u)]_{0}^{1} = arctan(1) - arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}.
(d) 121cos(x2)x3dx\int_{\frac{1}{2}}^{1} \frac{cos(x^{-2})}{x^3} dx. Let u=x2u = x^{-2}, then du=2x3dx    12du=1x3dxdu = -2x^{-3} dx \implies -\frac{1}{2}du = \frac{1}{x^3} dx. When x=12x=\frac{1}{2}, u=4u=4. When x=1x=1, u=1u=1.
So, 41cos(u)(12)du=12[sin(u)]41=12(sin(1)sin(4))=12(sin(4)sin(1))\int_{4}^{1} cos(u) (-\frac{1}{2}) du = -\frac{1}{2}[sin(u)]_{4}^{1} = -\frac{1}{2}(sin(1) - sin(4)) = \frac{1}{2}(sin(4) - sin(1)).
(e) 221xx21dx=[sec1(x)]22=sec1(2)sec1(2)\int_{\sqrt{2}}^{2} \frac{1}{x\sqrt{x^2-1}} dx = [sec^{-1}(x)]_{\sqrt{2}}^{2} = sec^{-1}(2) - sec^{-1}(\sqrt{2}).
sec1(2)=π3sec^{-1}(2) = \frac{\pi}{3} and sec1(2)=π4sec^{-1}(\sqrt{2}) = \frac{\pi}{4}.
So, π3π4=4π3π12=π12\frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12}.

3. Final Answer

Question 1:
(a) f(x)=3x2f'(x) = 3x^2
(b) g(x)=129xg'(x) = \frac{-1}{2\sqrt{9-x}}
Question 2:
2.1: Shown
2.2: (a) Maximum area is obtained when all the wire is used for the square.
(b) Minimum area is obtained when approximately 4.35 m is used for the square.
2.3: Approximately 11:58:30 AM
2.4: cosh(x)sinh(x)\frac{cosh(x)}{|sinh(x)|}.
Question 3:
(a) sin(lnx)+Csin(lnx) + C
(b) 2ex+C2e^{\sqrt{x}} + C
(c) π4\frac{\pi}{4}
(d) 12(sin(4)sin(1))\frac{1}{2}(sin(4) - sin(1))
(e) π12\frac{\pi}{12}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7