We need to solve the following problems: 1.1 (a) Find the limit $\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$. 1.1 (b) Find the limit $\lim_{x \to 3} (2x + |x-3|)$. 1.2 1 (a) Find the domain of $f(x) = \frac{x^2}{\lfloor x+1 \rfloor - 2}$. 1.2 1 (b) Discuss the continuity of $f(x)$ at $x=1$. 1.2 2 (a) Find the domain of $g(x) = \sqrt{\sec(x+\pi)}$. 1.2 2 (b) Discuss the continuity of $g(x)$ at $a = \pi$. 1.3 (a) Prove that $\frac{d}{dx}(\cos x) = -\sin x$ using the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$. 1.3 (b) Find the domain of $y = \sec^{-1} x$. Find the first derivative of the function. 1.4 Find the equation of the tangent line to the curve $y = g(x)$ at $x = 0$, if $y + x \cos y = x^2$.

AnalysisLimitsContinuityDerivativesDomainTrigonometric FunctionsInverse Trigonometric FunctionsTangent LineFloor Function
2025/6/6

1. Problem Description

We need to solve the following problems:
1.1 (a) Find the limit limh01(x+h)21x2h\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}.
1.1 (b) Find the limit limx3(2x+x3)\lim_{x \to 3} (2x + |x-3|).
1.2 1 (a) Find the domain of f(x)=x2x+12f(x) = \frac{x^2}{\lfloor x+1 \rfloor - 2}.
1.2 1 (b) Discuss the continuity of f(x)f(x) at x=1x=1.
1.2 2 (a) Find the domain of g(x)=sec(x+π)g(x) = \sqrt{\sec(x+\pi)}.
1.2 2 (b) Discuss the continuity of g(x)g(x) at a=πa = \pi.
1.3 (a) Prove that ddx(cosx)=sinx\frac{d}{dx}(\cos x) = -\sin x using the definition f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}.
1.3 (b) Find the domain of y=sec1xy = \sec^{-1} x. Find the first derivative of the function.
1.4 Find the equation of the tangent line to the curve y=g(x)y = g(x) at x=0x = 0, if y+xcosy=x2y + x \cos y = x^2.

2. Solution Steps

1.1 (a)
limh01(x+h)21x2h=limh0x2(x+h)2h(x+h)2x2=limh0x2(x2+2xh+h2)h(x+h)2x2=limh02xhh2h(x+h)2x2=limh02xh(x+h)2x2=2xx4=2x3\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} = \lim_{h \to 0} \frac{x^2 - (x+h)^2}{h(x+h)^2 x^2} = \lim_{h \to 0} \frac{x^2 - (x^2 + 2xh + h^2)}{h(x+h)^2 x^2} = \lim_{h \to 0} \frac{-2xh - h^2}{h(x+h)^2 x^2} = \lim_{h \to 0} \frac{-2x - h}{(x+h)^2 x^2} = \frac{-2x}{x^4} = -\frac{2}{x^3}.
The limit exists for x0x \neq 0.
1.1 (b)
limx3(2x+x3)\lim_{x \to 3} (2x + |x-3|).
When x>3x > 3, x3=x3|x-3| = x-3, so limx3+(2x+x3)=2(3)+33=6\lim_{x \to 3^+} (2x + x-3) = 2(3) + 3 - 3 = 6.
When x<3x < 3, x3=(x3)=3x|x-3| = -(x-3) = 3-x, so limx3(2x+3x)=2(3)+33=6\lim_{x \to 3^-} (2x + 3-x) = 2(3) + 3 - 3 = 6.
Since the left-hand limit and the right-hand limit are both equal to 6, the limit exists and equals
6.
1.2 1 (a)
f(x)=x2x+12f(x) = \frac{x^2}{\lfloor x+1 \rfloor - 2}. The domain is all xx such that x+120\lfloor x+1 \rfloor - 2 \neq 0, or x+12\lfloor x+1 \rfloor \neq 2.
So x+1\lfloor x+1 \rfloor cannot be 2, which means 2x+1<32 \leq x+1 < 3 must be avoided. Thus 1x<21 \leq x < 2 must be avoided.
Therefore, the domain is x(,1)[2,)x \in (-\infty, 1) \cup [2, \infty).
1.2 1 (b)
We need to discuss the continuity of f(x)f(x) at x=1x=1.
f(1)f(1) is not defined, since 11 is not in the domain.
limx1f(x)=limx1x2x+12=1212=1\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^2}{\lfloor x+1 \rfloor - 2} = \frac{1^2}{1-2} = -1.
limx1+f(x)\lim_{x \to 1^+} f(x) does not exist, since f(x)f(x) is not defined on (1,2)(1,2).
Since f(1)f(1) is not defined, f(x)f(x) is discontinuous at x=1x=1.
1.2 2 (a)
g(x)=sec(x+π)g(x) = \sqrt{\sec(x+\pi)}.
For the square root to be defined, sec(x+π)0\sec(x+\pi) \geq 0.
Since sec(x+π)=1cos(x+π)\sec(x+\pi) = \frac{1}{\cos(x+\pi)}, we need cos(x+π)0\cos(x+\pi) \geq 0.
cos(x+π)0\cos(x+\pi) \geq 0 when π2+2nπx+ππ2+2nπ-\frac{\pi}{2} + 2n\pi \leq x + \pi \leq \frac{\pi}{2} + 2n\pi for some integer nn.
3π2+2nπxπ2+2nπ-\frac{3\pi}{2} + 2n\pi \leq x \leq -\frac{\pi}{2} + 2n\pi.
Therefore, the domain is xnZ[3π2+2nπ,π2+2nπ]x \in \bigcup_{n \in \mathbb{Z}} [-\frac{3\pi}{2} + 2n\pi, -\frac{\pi}{2} + 2n\pi].
1.2 2 (b)
We need to discuss the continuity of g(x)g(x) at a=πa = \pi.
g(π)=sec(2π)=1=1g(\pi) = \sqrt{\sec(2\pi)} = \sqrt{1} = 1.
We need to check if limxπg(x)=g(π)\lim_{x \to \pi} g(x) = g(\pi).
First, we need to check if π\pi is in the domain.
For n=1n=1, we have 3π2+2π=π2ππ2+2π=3π2-\frac{3\pi}{2} + 2\pi = \frac{\pi}{2} \leq \pi \leq -\frac{\pi}{2} + 2\pi = \frac{3\pi}{2}. So π\pi is in the domain.
cos(x+π)\cos(x+\pi) is continuous, sec(x+π)\sec(x+\pi) is continuous where cos(x+π)0\cos(x+\pi) \neq 0, and x\sqrt{x} is continuous for x0x \geq 0.
Thus, g(x)=sec(x+π)g(x) = \sqrt{\sec(x+\pi)} is continuous at x=πx = \pi.
1.3 (a)
f(x)=cosxf(x) = \cos x. f(x+h)=cos(x+h)f(x+h) = \cos(x+h).
f(x)=limh0cos(x+h)cosxh=limh0cosxcoshsinxsinhcosxh=limh0cosx(cosh1)sinxsinhh=limh0cosxcosh1hsinxsinhhf'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} = \lim_{h \to 0} \frac{\cos x (\cos h - 1) - \sin x \sin h}{h} = \lim_{h \to 0} \cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h}.
We know that limh0cosh1h=0\lim_{h \to 0} \frac{\cos h - 1}{h} = 0 and limh0sinhh=1\lim_{h \to 0} \frac{\sin h}{h} = 1.
f(x)=cosx(0)sinx(1)=sinxf'(x) = \cos x (0) - \sin x (1) = -\sin x.
1.3 (b)
y=sec1xy = \sec^{-1} x.
The domain of sec1x\sec^{-1} x is x1|x| \geq 1, which means x(,1][1,)x \in (-\infty, -1] \cup [1, \infty).
y=sec1x    x=secyy = \sec^{-1} x \implies x = \sec y.
dxdy=secytany\frac{dx}{dy} = \sec y \tan y.
dydx=1secytany=1secysec2y1=1xx21\frac{dy}{dx} = \frac{1}{\sec y \tan y} = \frac{1}{\sec y \sqrt{\sec^2 y - 1}} = \frac{1}{x \sqrt{x^2 - 1}}.
1.4
y+xcosy=x2y + x \cos y = x^2.
We need to find the equation of the tangent line at x=0x=0.
When x=0x=0, y+0cosy=02y + 0 \cos y = 0^2, so y=0y = 0.
The point is (0,0)(0,0).
Differentiate the equation with respect to xx:
dydx+cosyxsinydydx=2x\frac{dy}{dx} + \cos y - x \sin y \frac{dy}{dx} = 2x.
dydx(1xsiny)=2xcosy\frac{dy}{dx}(1 - x \sin y) = 2x - \cos y.
dydx=2xcosy1xsiny\frac{dy}{dx} = \frac{2x - \cos y}{1 - x \sin y}.
At (0,0)(0,0), dydx=2(0)cos010sin0=11=1\frac{dy}{dx} = \frac{2(0) - \cos 0}{1 - 0 \sin 0} = \frac{-1}{1} = -1.
The equation of the tangent line is y0=1(x0)y - 0 = -1(x - 0), which is y=xy = -x.

3. Final Answer

1.1 (a) 2x3-\frac{2}{x^3} for x0x \neq 0.
1.1 (b) 66.
1.2 1 (a) x(,1)[2,)x \in (-\infty, 1) \cup [2, \infty).
1.2 1 (b) f(x)f(x) is discontinuous at x=1x=1.
1.2 2 (a) xnZ[3π2+2nπ,π2+2nπ]x \in \bigcup_{n \in \mathbb{Z}} [-\frac{3\pi}{2} + 2n\pi, -\frac{\pi}{2} + 2n\pi].
1.2 2 (b) g(x)g(x) is continuous at x=πx = \pi.
1.3 (a) Proof given above.
1.3 (b) Domain: x(,1][1,)x \in (-\infty, -1] \cup [1, \infty). Derivative: 1xx21\frac{1}{x \sqrt{x^2 - 1}}.
1.4 y=xy = -x.

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7