We need to solve four problems related to limits and derivatives. 2.1. Prove that $\lim_{x\to -2} x^2 - 1 = 3$ using the precise definition of the limit. 2.2. Prove that $\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty$ using the precise definition of the limit. 2.3. Find the limit $\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x}$. 2.4. Find the derivative $f'(x)$ of $f(x) = \sqrt{9-x}$ using the first principle definition of the derivative.

AnalysisLimitsDerivativesLimit ProofsFirst Principle of DerivativesTrigonometric LimitsDefinition of LimitInfinite Limits
2025/6/6

1. Problem Description

We need to solve four problems related to limits and derivatives.
2.

1. Prove that $\lim_{x\to -2} x^2 - 1 = 3$ using the precise definition of the limit.

2.

2. Prove that $\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty$ using the precise definition of the limit.

2.

3. Find the limit $\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x}$.

2.

4. Find the derivative $f'(x)$ of $f(x) = \sqrt{9-x}$ using the first principle definition of the derivative.

2. Solution Steps

2.

1. Using the precise definition of the limit to prove $\lim_{x\to -2} x^2 - 1 = 3$.

We need to show that for every ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that if 0<x(2)<δ0 < |x - (-2)| < \delta, then x213<ϵ|x^2 - 1 - 3| < \epsilon.
x213=x24=(x2)(x+2)=x2x+2|x^2 - 1 - 3| = |x^2 - 4| = |(x - 2)(x + 2)| = |x - 2| |x + 2|.
We want x2x+2<ϵ|x - 2| |x + 2| < \epsilon.
Let's assume that x+2<1|x + 2| < 1, then 1<x+2<1-1 < x + 2 < 1, which implies 3<x<1-3 < x < -1.
Therefore, 5<x2<3-5 < x - 2 < -3, so x2<5|x - 2| < 5.
Then, x2x+2<5x+2|x - 2| |x + 2| < 5 |x + 2|.
We want 5x+2<ϵ5 |x + 2| < \epsilon, so x+2<ϵ5|x + 2| < \frac{\epsilon}{5}.
Let δ=min(1,ϵ5)\delta = \min(1, \frac{\epsilon}{5}).
Then, if 0<x+2<δ0 < |x + 2| < \delta, we have x24=x2x+2<5x+2<5ϵ5=ϵ|x^2 - 4| = |x - 2| |x + 2| < 5 |x + 2| < 5 \cdot \frac{\epsilon}{5} = \epsilon.
Therefore, limx2x21=3\lim_{x\to -2} x^2 - 1 = 3.
2.

2. Using the precise definition of the limit to prove $\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty$.

We need to show that for every M>0M > 0, there exists a δ>0\delta > 0 such that if 0<x4<δ0 < x - 4 < \delta, then 2x4>M\frac{2}{\sqrt{x-4}} > M.
We want 2x4>M\frac{2}{\sqrt{x-4}} > M, so x4<2M\sqrt{x-4} < \frac{2}{M}, which means x4<4M2x - 4 < \frac{4}{M^2}.
Let δ=4M2\delta = \frac{4}{M^2}.
Then, if 0<x4<δ0 < x - 4 < \delta, we have 2x4>24M2=22M=M\frac{2}{\sqrt{x-4}} > \frac{2}{\sqrt{\frac{4}{M^2}}} = \frac{2}{\frac{2}{M}} = M.
Therefore, limx4+2x4=+\lim_{x\to 4^+} \frac{2}{\sqrt{x-4}} = +\infty.
2.

3. Find the limit $\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x}$.

limxπ41tanxsinxcosx=limxπ41sinxcosxsinxcosx=limxπ4cosxsinxcosxsinxcosx=limxπ4cosxsinxcosx(sinxcosx)=limxπ4(sinxcosx)cosx(sinxcosx)=limxπ41cosx=1cos(π4)=122=22=2\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x} = \lim_{x\to \frac{\pi}{4}} \frac{1-\frac{\sin x}{\cos x}}{\sin x - \cos x} = \lim_{x\to \frac{\pi}{4}} \frac{\frac{\cos x - \sin x}{\cos x}}{\sin x - \cos x} = \lim_{x\to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos x (\sin x - \cos x)} = \lim_{x\to \frac{\pi}{4}} \frac{-(\sin x - \cos x)}{\cos x (\sin x - \cos x)} = \lim_{x\to \frac{\pi}{4}} \frac{-1}{\cos x} = \frac{-1}{\cos(\frac{\pi}{4})} = \frac{-1}{\frac{\sqrt{2}}{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}.
2.

4. Find the derivative $f'(x)$ of $f(x) = \sqrt{9-x}$ using the first principle definition of the derivative.

f(x)=limh0f(x+h)f(x)h=limh09(x+h)9xhf'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h\to 0} \frac{\sqrt{9-(x+h)} - \sqrt{9-x}}{h}.
Multiply by the conjugate:
f(x)=limh0(9(x+h)9x)(9(x+h)+9x)h(9(x+h)+9x)=limh09(x+h)(9x)h(9(x+h)+9x)=limh09xh9+xh(9(x+h)+9x)=limh0hh(9(x+h)+9x)=limh019(x+h)+9x=19x+9x=129xf'(x) = \lim_{h\to 0} \frac{(\sqrt{9-(x+h)} - \sqrt{9-x})(\sqrt{9-(x+h)} + \sqrt{9-x})}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{9-(x+h) - (9-x)}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{9 - x - h - 9 + x}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{-h}{h(\sqrt{9-(x+h)} + \sqrt{9-x})} = \lim_{h\to 0} \frac{-1}{\sqrt{9-(x+h)} + \sqrt{9-x}} = \frac{-1}{\sqrt{9-x} + \sqrt{9-x}} = \frac{-1}{2\sqrt{9-x}}.

3. Final Answer

2.

1. Proof complete.

2.

2. Proof complete.

2.

3. $-\sqrt{2}$

2.

4. $\frac{-1}{2\sqrt{9-x}}$

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7