We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^2 x} dx$.

AnalysisDefinite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24

1. Problem Description

We are asked to evaluate the definite integral 0π41sin2x+3cos2xdx\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^2 x} dx.

2. Solution Steps

First, we divide both the numerator and the denominator by cos2x\cos^2 x.
0π41sin2x+3cos2xdx=0π41cos2xsin2xcos2x+3cos2xcos2xdx\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^2 x} dx = \int_{0}^{\frac{\pi}{4}} \frac{\frac{1}{\cos^2 x}}{\frac{\sin^2 x}{\cos^2 x} + 3 \frac{\cos^2 x}{\cos^2 x}} dx
This simplifies to:
0π4sec2xtan2x+3dx\int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{\tan^2 x + 3} dx
Let u=tanxu = \tan x. Then, du=sec2xdxdu = \sec^2 x dx. The limits of integration will change: when x=0x = 0, u=tan0=0u = \tan 0 = 0; when x=π4x = \frac{\pi}{4}, u=tanπ4=1u = \tan \frac{\pi}{4} = 1.
Thus, the integral becomes:
011u2+3du\int_{0}^{1} \frac{1}{u^2 + 3} du
We know that
1x2+a2dx=1aarctanxa+C\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C
So, in our case, a2=3a^2 = 3, so a=3a = \sqrt{3}. Therefore,
011u2+3du=[13arctanu3]01=13arctan1313arctan0\int_{0}^{1} \frac{1}{u^2 + 3} du = \left[ \frac{1}{\sqrt{3}} \arctan \frac{u}{\sqrt{3}} \right]_{0}^{1} = \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \arctan 0
Since arctan0=0\arctan 0 = 0, we have
13arctan13\frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}}
We know that tanπ6=13\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}. Therefore, arctan13=π6\arctan \frac{1}{\sqrt{3}} = \frac{\pi}{6}.
So, the integral evaluates to:
13π6=π63\frac{1}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{6\sqrt{3}}
Rationalizing the denominator gives us:
π363=π318\frac{\pi \sqrt{3}}{6 \cdot 3} = \frac{\pi \sqrt{3}}{18}

3. Final Answer

π318\frac{\pi \sqrt{3}}{18}

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4