The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac{\pi}{3}-x)}{\sin(x-\frac{\pi}{3})} $
2025/6/4
1. Problem Description
The problem asks us to evaluate the following limit:
2. Solution Steps
Let . Then .
As , we have .
Then, .
Thus, we have
\lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac{\pi}{3}-x)}{\sin(x-\frac{\pi}{3})} = \lim_{u\to 0} \frac{\sqrt{3}(-u)}{\sin(u)} = -\sqrt{3} \lim_{u\to 0} \frac{u}{\sin(u)}
We know that
\lim_{x\to 0} \frac{\sin x}{x} = 1
Therefore,
\lim_{x\to 0} \frac{x}{\sin x} = \frac{1}{\lim_{x\to 0} \frac{\sin x}{x}} = \frac{1}{1} = 1
So,
-\sqrt{3} \lim_{u\to 0} \frac{u}{\sin(u)} = -\sqrt{3} \times 1 = -\sqrt{3}