For function 33, f(x,y)=x3y−xy3: First, we find the first partial derivatives with respect to x and y: ∂x∂f=3x2y−y3 ∂y∂f=x3−3xy2 Next, we find the second partial derivatives with respect to x and y: ∂x2∂2f=∂x∂(3x2y−y3)=6xy ∂y2∂2f=∂y∂(x3−3xy2)=−6xy Now, we check if Laplace's equation holds:
∂x2∂2f+∂y2∂2f=6xy+(−6xy)=0 Thus, f(x,y)=x3y−xy3 is a harmonic function. For function 34, f(x,y)=ln(4x2+4y2): First, we find the first partial derivatives with respect to x and y: ∂x∂f=4x2+4y28x=x2+y22x ∂y∂f=4x2+4y28y=x2+y22y Next, we find the second partial derivatives with respect to x and y: ∂x2∂2f=∂x∂(x2+y22x)=(x2+y2)22(x2+y2)−2x(2x)=(x2+y2)22x2+2y2−4x2=(x2+y2)22y2−2x2 ∂y2∂2f=∂y∂(x2+y22y)=(x2+y2)22(x2+y2)−2y(2y)=(x2+y2)22x2+2y2−4y2=(x2+y2)22x2−2y2 Now, we check if Laplace's equation holds:
∂x2∂2f+∂y2∂2f=(x2+y2)22y2−2x2+(x2+y2)22x2−2y2=(x2+y2)22y2−2x2+2x2−2y2=(x2+y2)20=0 Thus, f(x,y)=ln(4x2+4y2) is a harmonic function.