First, we evaluate the inner integral with respect to y: ∫13x2ydy=x2∫13ydy Using the power rule for integration:
∫ydy=2y2+C Thus, we have:
x2∫13ydy=x2[2y2]13=x2(232−212)=x2(29−21)=x2(28)=4x2 Now, we evaluate the outer integral with respect to x: ∫024x2dx=4∫02x2dx Using the power rule for integration:
∫x2dx=3x3+C Thus, we have:
4∫02x2dx=4[3x3]02=4(323−303)=4(38−0)=4(38)=332