a. Tangent plane to z = ln ( 2 x + y ) z = \ln(2x+y) z = ln ( 2 x + y ) at ( 1 , 2 ) (1,2) ( 1 , 2 ) . First, find z 0 = ln ( 2 ( 1 ) + 2 ) = ln ( 4 ) z_0 = \ln(2(1)+2) = \ln(4) z 0 = ln ( 2 ( 1 ) + 2 ) = ln ( 4 ) . Next, calculate the partial derivatives:
∂ z ∂ x = 2 2 x + y \frac{\partial z}{\partial x} = \frac{2}{2x+y} ∂ x ∂ z = 2 x + y 2 , so ∂ z ∂ x ( 1 , 2 ) = 2 2 ( 1 ) + 2 = 2 4 = 1 2 \frac{\partial z}{\partial x}(1,2) = \frac{2}{2(1)+2} = \frac{2}{4} = \frac{1}{2} ∂ x ∂ z ( 1 , 2 ) = 2 ( 1 ) + 2 2 = 4 2 = 2 1 . ∂ z ∂ y = 1 2 x + y \frac{\partial z}{\partial y} = \frac{1}{2x+y} ∂ y ∂ z = 2 x + y 1 , so ∂ z ∂ y ( 1 , 2 ) = 1 2 ( 1 ) + 2 = 1 4 \frac{\partial z}{\partial y}(1,2) = \frac{1}{2(1)+2} = \frac{1}{4} ∂ y ∂ z ( 1 , 2 ) = 2 ( 1 ) + 2 1 = 4 1 . The equation of the tangent plane is:
z − z 0 = ∂ z ∂ x ( x − x 0 ) + ∂ z ∂ y ( y − y 0 ) z - z_0 = \frac{\partial z}{\partial x}(x-x_0) + \frac{\partial z}{\partial y}(y-y_0) z − z 0 = ∂ x ∂ z ( x − x 0 ) + ∂ y ∂ z ( y − y 0 ) z − ln ( 4 ) = 1 2 ( x − 1 ) + 1 4 ( y − 2 ) z - \ln(4) = \frac{1}{2}(x-1) + \frac{1}{4}(y-2) z − ln ( 4 ) = 2 1 ( x − 1 ) + 4 1 ( y − 2 ) z = 1 2 x + 1 4 y − 1 2 − 1 2 + ln ( 4 ) z = \frac{1}{2}x + \frac{1}{4}y - \frac{1}{2} - \frac{1}{2} + \ln(4) z = 2 1 x + 4 1 y − 2 1 − 2 1 + ln ( 4 ) z = 1 2 x + 1 4 y − 1 + ln ( 4 ) z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4) z = 2 1 x + 4 1 y − 1 + ln ( 4 )
b. p-series ∑ x = 1 ∞ 1 x p \sum_{x=1}^{\infty} \frac{1}{x^p} ∑ x = 1 ∞ x p 1 . This is a standard result. The p-series converges if p > 1 p > 1 p > 1 and diverges if p ≤ 1 p \le 1 p ≤ 1 . This can be proven using the integral test.
c. u = ( x 2 + y 2 + z 2 ) 1 / 2 u = (x^2+y^2+z^2)^{1/2} u = ( x 2 + y 2 + z 2 ) 1/2 . Find ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} ∂ x 2 ∂ 2 u + ∂ y 2 ∂ 2 u + ∂ z 2 ∂ 2 u . ∂ u ∂ x = 1 2 ( x 2 + y 2 + z 2 ) − 1 / 2 ( 2 x ) = x x 2 + y 2 + z 2 \frac{\partial u}{\partial x} = \frac{1}{2}(x^2+y^2+z^2)^{-1/2}(2x) = \frac{x}{\sqrt{x^2+y^2+z^2}} ∂ x ∂ u = 2 1 ( x 2 + y 2 + z 2 ) − 1/2 ( 2 x ) = x 2 + y 2 + z 2 x ∂ 2 u ∂ x 2 = x 2 + y 2 + z 2 − x x x 2 + y 2 + z 2 x 2 + y 2 + z 2 = x 2 + y 2 + z 2 − x 2 ( x 2 + y 2 + z 2 ) 3 / 2 = y 2 + z 2 ( x 2 + y 2 + z 2 ) 3 / 2 \frac{\partial^2 u}{\partial x^2} = \frac{\sqrt{x^2+y^2+z^2} - x \frac{x}{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} = \frac{x^2+y^2+z^2 - x^2}{(x^2+y^2+z^2)^{3/2}} = \frac{y^2+z^2}{(x^2+y^2+z^2)^{3/2}} ∂ x 2 ∂ 2 u = x 2 + y 2 + z 2 x 2 + y 2 + z 2 − x x 2 + y 2 + z 2 x = ( x 2 + y 2 + z 2 ) 3/2 x 2 + y 2 + z 2 − x 2 = ( x 2 + y 2 + z 2 ) 3/2 y 2 + z 2 Similarly, ∂ 2 u ∂ y 2 = x 2 + z 2 ( x 2 + y 2 + z 2 ) 3 / 2 \frac{\partial^2 u}{\partial y^2} = \frac{x^2+z^2}{(x^2+y^2+z^2)^{3/2}} ∂ y 2 ∂ 2 u = ( x 2 + y 2 + z 2 ) 3/2 x 2 + z 2 and ∂ 2 u ∂ z 2 = x 2 + y 2 ( x 2 + y 2 + z 2 ) 3 / 2 \frac{\partial^2 u}{\partial z^2} = \frac{x^2+y^2}{(x^2+y^2+z^2)^{3/2}} ∂ z 2 ∂ 2 u = ( x 2 + y 2 + z 2 ) 3/2 x 2 + y 2 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 = y 2 + z 2 + x 2 + z 2 + x 2 + y 2 ( x 2 + y 2 + z 2 ) 3 / 2 = 2 ( x 2 + y 2 + z 2 ) ( x 2 + y 2 + z 2 ) 3 / 2 = 2 x 2 + y 2 + z 2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{y^2+z^2 + x^2+z^2 + x^2+y^2}{(x^2+y^2+z^2)^{3/2}} = \frac{2(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{3/2}} = \frac{2}{\sqrt{x^2+y^2+z^2}} ∂ x 2 ∂ 2 u + ∂ y 2 ∂ 2 u + ∂ z 2 ∂ 2 u = ( x 2 + y 2 + z 2 ) 3/2 y 2 + z 2 + x 2 + z 2 + x 2 + y 2 = ( x 2 + y 2 + z 2 ) 3/2 2 ( x 2 + y 2 + z 2 ) = x 2 + y 2 + z 2 2
d. If a n > 0 a_n > 0 a n > 0 and a n + 1 a n < k < 1 \frac{a_{n+1}}{a_n} < k < 1 a n a n + 1 < k < 1 , show ∑ a n \sum a_n ∑ a n converges. By the ratio test, if lim n → ∞ a n + 1 a n < 1 \lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1 lim n → ∞ a n a n + 1 < 1 , the series converges. Since a n + 1 a n < k < 1 \frac{a_{n+1}}{a_n} < k < 1 a n a n + 1 < k < 1 , lim n → ∞ a n + 1 a n ≤ k < 1 \lim_{n\to\infty} \frac{a_{n+1}}{a_n} \le k < 1 lim n → ∞ a n a n + 1 ≤ k < 1 . Therefore, the series ∑ a n \sum a_n ∑ a n converges. Show ∑ 2 n n 3 + 1 \sum \frac{2^n}{n^3+1} ∑ n 3 + 1 2 n diverges. Let a n = 2 n n 3 + 1 a_n = \frac{2^n}{n^3+1} a n = n 3 + 1 2 n . Then a n + 1 a n = 2 n + 1 ( n + 1 ) 3 + 1 ⋅ n 3 + 1 2 n = 2 n 3 + 1 ( n + 1 ) 3 + 1 = 2 n 3 + 1 n 3 + 3 n 2 + 3 n + 2 \frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)^3+1} \cdot \frac{n^3+1}{2^n} = 2 \frac{n^3+1}{(n+1)^3+1} = 2 \frac{n^3+1}{n^3+3n^2+3n+2} a n a n + 1 = ( n + 1 ) 3 + 1 2 n + 1 ⋅ 2 n n 3 + 1 = 2 ( n + 1 ) 3 + 1 n 3 + 1 = 2 n 3 + 3 n 2 + 3 n + 2 n 3 + 1 . lim n → ∞ a n + 1 a n = lim n → ∞ 2 n 3 + 1 n 3 + 3 n 2 + 3 n + 2 = 2 \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} 2 \frac{n^3+1}{n^3+3n^2+3n+2} = 2 lim n → ∞ a n a n + 1 = lim n → ∞ 2 n 3 + 3 n 2 + 3 n + 2 n 3 + 1 = 2 . Since the limit is greater than 1, by the ratio test, the series diverges.
e. Integrate f ( x ) = 2 + 5 x + 3 x 2 + 2 x 3 f(x) = 2+5x+3x^2+2x^3 f ( x ) = 2 + 5 x + 3 x 2 + 2 x 3 from a = 0 a=0 a = 0 to b = 2.5 b=2.5 b = 2.5 using 5 segments. The width of each segment is h = b − a n = 2.5 − 0 5 = 0.5 h = \frac{b-a}{n} = \frac{2.5-0}{5} = 0.5 h = n b − a = 5 2.5 − 0 = 0.5 . Exact value of the integral: ∫ 0 2.5 ( 2 + 5 x + 3 x 2 + 2 x 3 ) d x = [ 2 x + 5 2 x 2 + x 3 + 1 2 x 4 ] 0 2.5 = 2 ( 2.5 ) + 5 2 ( 2.5 ) 2 + ( 2.5 ) 3 + 1 2 ( 2.5 ) 4 = 5 + 15.625 + 15.625 + 4.8828125 = 41.1328125 \int_0^{2.5} (2+5x+3x^2+2x^3)dx = [2x + \frac{5}{2}x^2 + x^3 + \frac{1}{2}x^4]_0^{2.5} = 2(2.5) + \frac{5}{2}(2.5)^2 + (2.5)^3 + \frac{1}{2}(2.5)^4 = 5 + 15.625 + 15.625 + 4.8828125 = 41.1328125 ∫ 0 2.5 ( 2 + 5 x + 3 x 2 + 2 x 3 ) d x = [ 2 x + 2 5 x 2 + x 3 + 2 1 x 4 ] 0 2.5 = 2 ( 2.5 ) + 2 5 ( 2.5 ) 2 + ( 2.5 ) 3 + 2 1 ( 2.5 ) 4 = 5 + 15.625 + 15.625 + 4.8828125 = 41.1328125 .
[i] Mid-ordinate rule:
Midpoints: x i = 0.25 , 0.75 , 1.25 , 1.75 , 2.25 x_i = 0.25, 0.75, 1.25, 1.75, 2.25 x i = 0.25 , 0.75 , 1.25 , 1.75 , 2.25 . f ( 0.25 ) = 2 + 5 ( 0.25 ) + 3 ( 0.25 ) 2 + 2 ( 0.25 ) 3 = 2 + 1.25 + 0.1875 + 0.03125 = 3.46875 f(0.25) = 2 + 5(0.25) + 3(0.25)^2 + 2(0.25)^3 = 2 + 1.25 + 0.1875 + 0.03125 = 3.46875 f ( 0.25 ) = 2 + 5 ( 0.25 ) + 3 ( 0.25 ) 2 + 2 ( 0.25 ) 3 = 2 + 1.25 + 0.1875 + 0.03125 = 3.46875 f ( 0.75 ) = 2 + 5 ( 0.75 ) + 3 ( 0.75 ) 2 + 2 ( 0.75 ) 3 = 2 + 3.75 + 1.6875 + 0.84375 = 8.28125 f(0.75) = 2 + 5(0.75) + 3(0.75)^2 + 2(0.75)^3 = 2 + 3.75 + 1.6875 + 0.84375 = 8.28125 f ( 0.75 ) = 2 + 5 ( 0.75 ) + 3 ( 0.75 ) 2 + 2 ( 0.75 ) 3 = 2 + 3.75 + 1.6875 + 0.84375 = 8.28125 f ( 1.25 ) = 2 + 5 ( 1.25 ) + 3 ( 1.25 ) 2 + 2 ( 1.25 ) 3 = 2 + 6.25 + 4.6875 + 3.90625 = 16.84375 f(1.25) = 2 + 5(1.25) + 3(1.25)^2 + 2(1.25)^3 = 2 + 6.25 + 4.6875 + 3.90625 = 16.84375 f ( 1.25 ) = 2 + 5 ( 1.25 ) + 3 ( 1.25 ) 2 + 2 ( 1.25 ) 3 = 2 + 6.25 + 4.6875 + 3.90625 = 16.84375 f ( 1.75 ) = 2 + 5 ( 1.75 ) + 3 ( 1.75 ) 2 + 2 ( 1.75 ) 3 = 2 + 8.75 + 9.1875 + 10.71875 = 30.65625 f(1.75) = 2 + 5(1.75) + 3(1.75)^2 + 2(1.75)^3 = 2 + 8.75 + 9.1875 + 10.71875 = 30.65625 f ( 1.75 ) = 2 + 5 ( 1.75 ) + 3 ( 1.75 ) 2 + 2 ( 1.75 ) 3 = 2 + 8.75 + 9.1875 + 10.71875 = 30.65625 f ( 2.25 ) = 2 + 5 ( 2.25 ) + 3 ( 2.25 ) 2 + 2 ( 2.25 ) 3 = 2 + 11.25 + 15.1875 + 22.78125 = 51.21875 f(2.25) = 2 + 5(2.25) + 3(2.25)^2 + 2(2.25)^3 = 2 + 11.25 + 15.1875 + 22.78125 = 51.21875 f ( 2.25 ) = 2 + 5 ( 2.25 ) + 3 ( 2.25 ) 2 + 2 ( 2.25 ) 3 = 2 + 11.25 + 15.1875 + 22.78125 = 51.21875 Mid-ordinate approximation: h ∑ f ( x i ) = 0.5 ( 3.46875 + 8.28125 + 16.84375 + 30.65625 + 51.21875 ) = 0.5 ( 110.46875 ) = 55.234375 h \sum f(x_i) = 0.5(3.46875 + 8.28125 + 16.84375 + 30.65625 + 51.21875) = 0.5(110.46875) = 55.234375 h ∑ f ( x i ) = 0.5 ( 3.46875 + 8.28125 + 16.84375 + 30.65625 + 51.21875 ) = 0.5 ( 110.46875 ) = 55.234375 . Relative error: ∣ 41.1328125 − 55.234375 41.1328125 ∣ = ∣ − 14.1015625 41.1328125 ∣ = 0.34281 ≈ 34.28 % |\frac{41.1328125 - 55.234375}{41.1328125}| = |\frac{-14.1015625}{41.1328125}| = 0.34281 \approx 34.28\% ∣ 41.1328125 41.1328125 − 55.234375 ∣ = ∣ 41.1328125 − 14.1015625 ∣ = 0.34281 ≈ 34.28%
[ii] Simpson's one-third rule:
Simpson's rule: h 3 [ f ( x 0 ) + 4 f ( x 1 ) + 2 f ( x 2 ) + 4 f ( x 3 ) + f ( x 4 ) ] \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4)] 3 h [ f ( x 0 ) + 4 f ( x 1 ) + 2 f ( x 2 ) + 4 f ( x 3 ) + f ( x 4 )] . x 0 = 0 , x 1 = 0.5 , x 2 = 1 , x 3 = 1.5 , x 4 = 2 , x 5 = 2.5 x_0 = 0, x_1 = 0.5, x_2 = 1, x_3 = 1.5, x_4 = 2, x_5=2.5 x 0 = 0 , x 1 = 0.5 , x 2 = 1 , x 3 = 1.5 , x 4 = 2 , x 5 = 2.5 Note that since we are given 5 segments, that indicates 6 points to be used, not 5 as mentioned earlier. Thus the limits of integration must have equal number of segments.
f ( 0 ) = 2 f(0) = 2 f ( 0 ) = 2 , f ( 0.5 ) = 2 + 5 ( 0.5 ) + 3 ( 0.5 ) 2 + 2 ( 0.5 ) 3 = 2 + 2.5 + 0.75 + 0.25 = 5.5 f(0.5) = 2 + 5(0.5) + 3(0.5)^2 + 2(0.5)^3 = 2 + 2.5 + 0.75 + 0.25 = 5.5 f ( 0.5 ) = 2 + 5 ( 0.5 ) + 3 ( 0.5 ) 2 + 2 ( 0.5 ) 3 = 2 + 2.5 + 0.75 + 0.25 = 5.5 f ( 1 ) = 2 + 5 ( 1 ) + 3 ( 1 ) 2 + 2 ( 1 ) 3 = 2 + 5 + 3 + 2 = 12 f(1) = 2 + 5(1) + 3(1)^2 + 2(1)^3 = 2 + 5 + 3 + 2 = 12 f ( 1 ) = 2 + 5 ( 1 ) + 3 ( 1 ) 2 + 2 ( 1 ) 3 = 2 + 5 + 3 + 2 = 12 f ( 1.5 ) = 2 + 5 ( 1.5 ) + 3 ( 1.5 ) 2 + 2 ( 1.5 ) 3 = 2 + 7.5 + 6.75 + 6.75 = 23.0 f(1.5) = 2 + 5(1.5) + 3(1.5)^2 + 2(1.5)^3 = 2 + 7.5 + 6.75 + 6.75 = 23.0 f ( 1.5 ) = 2 + 5 ( 1.5 ) + 3 ( 1.5 ) 2 + 2 ( 1.5 ) 3 = 2 + 7.5 + 6.75 + 6.75 = 23.0 f ( 2 ) = 2 + 5 ( 2 ) + 3 ( 2 ) 2 + 2 ( 2 ) 3 = 2 + 10 + 12 + 16 = 40 f(2) = 2 + 5(2) + 3(2)^2 + 2(2)^3 = 2 + 10 + 12 + 16 = 40 f ( 2 ) = 2 + 5 ( 2 ) + 3 ( 2 ) 2 + 2 ( 2 ) 3 = 2 + 10 + 12 + 16 = 40 f ( 2.5 ) = 2 + 5 ( 2.5 ) + 3 ( 2.5 ) 2 + 2 ( 2.5 ) 3 = 2 + 12.5 + 18.75 + 31.25 = 64.5 f(2.5) = 2 + 5(2.5) + 3(2.5)^2 + 2(2.5)^3 = 2 + 12.5 + 18.75 + 31.25 = 64.5 f ( 2.5 ) = 2 + 5 ( 2.5 ) + 3 ( 2.5 ) 2 + 2 ( 2.5 ) 3 = 2 + 12.5 + 18.75 + 31.25 = 64.5
Simpson's rule with 5 segments (6 points) where h = 0.5
h 3 [ f ( x 0 ) + 4 f ( x 1 ) + 2 f ( x 2 ) + 4 f ( x 3 ) + 2 f ( x 4 ) + f ( x 5 ) ] = 0.5 3 [ 2 + 4 ( 5.5 ) + 2 ( 12 ) + 4 ( 23 ) + 2 ( 40 ) + 64.5 ] = 0.5 3 [ 2 + 22 + 24 + 92 + 80 + 64.5 ] = 0.5 3 [ 284.5 ] = 47.41666666666667 \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + f(x_5)] = \frac{0.5}{3} [2 + 4(5.5) + 2(12) + 4(23) + 2(40) + 64.5] = \frac{0.5}{3} [2+22+24+92+80+64.5] = \frac{0.5}{3} [284.5] = 47.41666666666667 3 h [ f ( x 0 ) + 4 f ( x 1 ) + 2 f ( x 2 ) + 4 f ( x 3 ) + 2 f ( x 4 ) + f ( x 5 )] = 3 0.5 [ 2 + 4 ( 5.5 ) + 2 ( 12 ) + 4 ( 23 ) + 2 ( 40 ) + 64.5 ] = 3 0.5 [ 2 + 22 + 24 + 92 + 80 + 64.5 ] = 3 0.5 [ 284.5 ] = 47.41666666666667 . Relative error: ∣ 41.1328125 − 47.41666666666667 41.1328125 ∣ = ∣ − 6.283854166666665 41.1328125 ∣ = 0.152773 ≈ 15.28 % |\frac{41.1328125 - 47.41666666666667}{41.1328125}| = |\frac{-6.283854166666665}{41.1328125}| = 0.152773 \approx 15.28\% ∣ 41.1328125 41.1328125 − 47.41666666666667 ∣ = ∣ 41.1328125 − 6.283854166666665 ∣ = 0.152773 ≈ 15.28%
f. Slopes of the traces to z = 10 − 4 x 2 − y 2 z = 10-4x^2-y^2 z = 10 − 4 x 2 − y 2 at the point ( 1 , 2 ) (1,2) ( 1 , 2 ) . Trace 1: y = 2 y=2 y = 2 , z = 10 − 4 x 2 − 4 z = 10 - 4x^2 - 4 z = 10 − 4 x 2 − 4 . z = 6 − 4 x 2 z = 6 - 4x^2 z = 6 − 4 x 2 . d z d x = − 8 x \frac{dz}{dx} = -8x d x d z = − 8 x . At ( 1 , 2 ) (1,2) ( 1 , 2 ) , d z d x = − 8 ( 1 ) = − 8 \frac{dz}{dx} = -8(1) = -8 d x d z = − 8 ( 1 ) = − 8 . Trace 2: x = 1 x=1 x = 1 , z = 10 − 4 − y 2 z = 10 - 4 - y^2 z = 10 − 4 − y 2 . z = 6 − y 2 z = 6 - y^2 z = 6 − y 2 . d z d y = − 2 y \frac{dz}{dy} = -2y d y d z = − 2 y . At ( 1 , 2 ) (1,2) ( 1 , 2 ) , d z d y = − 2 ( 2 ) = − 4 \frac{dz}{dy} = -2(2) = -4 d y d z = − 2 ( 2 ) = − 4 .
g. Radius of convergence for power series ∑ n = 0 ∞ n ( − 1 ) n 4 n ( x + 3 ) n \sum_{n=0}^{\infty} \frac{n(-1)^n}{4^n}(x+3)^n ∑ n = 0 ∞ 4 n n ( − 1 ) n ( x + 3 ) n . Let a n = n ( − 1 ) n 4 n ( x + 3 ) n a_n = \frac{n(-1)^n}{4^n}(x+3)^n a n = 4 n n ( − 1 ) n ( x + 3 ) n . Using the ratio test: lim n → ∞ ∣ a n + 1 a n ∣ = lim n → ∞ ∣ ( n + 1 ) ( − 1 ) n + 1 ( x + 3 ) n + 1 4 n + 1 ⋅ 4 n n ( − 1 ) n ( x + 3 ) n ∣ = lim n → ∞ ∣ n + 1 n ⋅ 1 4 ⋅ ( x + 3 ) ∣ = ∣ x + 3 ∣ 4 \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \lim_{n\to\infty} |\frac{(n+1)(-1)^{n+1}(x+3)^{n+1}}{4^{n+1}} \cdot \frac{4^n}{n(-1)^n(x+3)^n}| = \lim_{n\to\infty} |\frac{n+1}{n} \cdot \frac{1}{4} \cdot (x+3)| = \frac{|x+3|}{4} lim n → ∞ ∣ a n a n + 1 ∣ = lim n → ∞ ∣ 4 n + 1 ( n + 1 ) ( − 1 ) n + 1 ( x + 3 ) n + 1 ⋅ n ( − 1 ) n ( x + 3 ) n 4 n ∣ = lim n → ∞ ∣ n n + 1 ⋅ 4 1 ⋅ ( x + 3 ) ∣ = 4 ∣ x + 3∣ . For convergence, ∣ x + 3 ∣ 4 < 1 \frac{|x+3|}{4} < 1 4 ∣ x + 3∣ < 1 . ∣ x + 3 ∣ < 4 |x+3| < 4 ∣ x + 3∣ < 4 . Therefore, the radius of convergence is