The problem consists of several calculus questions. We are asked to: a. Find the tangent plane to $z = \ln(2x+y)$ at $(1,2)$. b. Show the conditions for the convergence and divergence of a p-series $\sum_{x=1}^{\infty} \frac{1}{x^p}$. c. Find $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ given $u = (x^2+y^2+z^2)^{1/2}$. d. If $a_n > 0$ for all $n$ and $\frac{a_{n+1}}{a_n} < k < 1$, show $\sum a_n$ converges, and then show $\sum \frac{2^n}{n^{3+1}}$ diverges. (Typo: $n^{3+1}$ likely means $n^3 + 1$). e. Use 5-segment Mid-ordinate and Simpson's one-third rule to integrate $f(x) = 2+5x+3x^2+2x^3$ from $a=0$ to $b=2.5$ and determine the relative error. f. Find the slopes of the traces to $z = 10-4x^2-y^2$ at the point $(1,2)$. g. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n(-1)^n}{4^n}(x+3)^n$.

AnalysisCalculusMultivariable CalculusTangent PlaneSeries ConvergenceP-SeriesRatio TestLaplacianNumerical IntegrationMid-ordinate RuleSimpson's RuleRelative ErrorPartial DerivativesPower SeriesRadius of Convergence
2025/4/22

1. Problem Description

The problem consists of several calculus questions. We are asked to:
a. Find the tangent plane to z=ln(2x+y)z = \ln(2x+y) at (1,2)(1,2).
b. Show the conditions for the convergence and divergence of a p-series x=11xp\sum_{x=1}^{\infty} \frac{1}{x^p}.
c. Find 2ux2+2uy2+2uz2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} given u=(x2+y2+z2)1/2u = (x^2+y^2+z^2)^{1/2}.
d. If an>0a_n > 0 for all nn and an+1an<k<1\frac{a_{n+1}}{a_n} < k < 1, show an\sum a_n converges, and then show 2nn3+1\sum \frac{2^n}{n^{3+1}} diverges. (Typo: n3+1n^{3+1} likely means n3+1n^3 + 1).
e. Use 5-segment Mid-ordinate and Simpson's one-third rule to integrate f(x)=2+5x+3x2+2x3f(x) = 2+5x+3x^2+2x^3 from a=0a=0 to b=2.5b=2.5 and determine the relative error.
f. Find the slopes of the traces to z=104x2y2z = 10-4x^2-y^2 at the point (1,2)(1,2).
g. Find the radius of convergence of the power series n=0n(1)n4n(x+3)n\sum_{n=0}^{\infty} \frac{n(-1)^n}{4^n}(x+3)^n.

2. Solution Steps

a. Tangent plane to z=ln(2x+y)z = \ln(2x+y) at (1,2)(1,2).
First, find z0=ln(2(1)+2)=ln(4)z_0 = \ln(2(1)+2) = \ln(4).
Next, calculate the partial derivatives:
zx=22x+y\frac{\partial z}{\partial x} = \frac{2}{2x+y}, so zx(1,2)=22(1)+2=24=12\frac{\partial z}{\partial x}(1,2) = \frac{2}{2(1)+2} = \frac{2}{4} = \frac{1}{2}.
zy=12x+y\frac{\partial z}{\partial y} = \frac{1}{2x+y}, so zy(1,2)=12(1)+2=14\frac{\partial z}{\partial y}(1,2) = \frac{1}{2(1)+2} = \frac{1}{4}.
The equation of the tangent plane is:
zz0=zx(xx0)+zy(yy0)z - z_0 = \frac{\partial z}{\partial x}(x-x_0) + \frac{\partial z}{\partial y}(y-y_0)
zln(4)=12(x1)+14(y2)z - \ln(4) = \frac{1}{2}(x-1) + \frac{1}{4}(y-2)
z=12x+14y1212+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - \frac{1}{2} - \frac{1}{2} + \ln(4)
z=12x+14y1+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4)
b. p-series x=11xp\sum_{x=1}^{\infty} \frac{1}{x^p}.
This is a standard result. The p-series converges if p>1p > 1 and diverges if p1p \le 1. This can be proven using the integral test.
c. u=(x2+y2+z2)1/2u = (x^2+y^2+z^2)^{1/2}. Find 2ux2+2uy2+2uz2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.
ux=12(x2+y2+z2)1/2(2x)=xx2+y2+z2\frac{\partial u}{\partial x} = \frac{1}{2}(x^2+y^2+z^2)^{-1/2}(2x) = \frac{x}{\sqrt{x^2+y^2+z^2}}
2ux2=x2+y2+z2xxx2+y2+z2x2+y2+z2=x2+y2+z2x2(x2+y2+z2)3/2=y2+z2(x2+y2+z2)3/2\frac{\partial^2 u}{\partial x^2} = \frac{\sqrt{x^2+y^2+z^2} - x \frac{x}{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} = \frac{x^2+y^2+z^2 - x^2}{(x^2+y^2+z^2)^{3/2}} = \frac{y^2+z^2}{(x^2+y^2+z^2)^{3/2}}
Similarly, 2uy2=x2+z2(x2+y2+z2)3/2\frac{\partial^2 u}{\partial y^2} = \frac{x^2+z^2}{(x^2+y^2+z^2)^{3/2}} and 2uz2=x2+y2(x2+y2+z2)3/2\frac{\partial^2 u}{\partial z^2} = \frac{x^2+y^2}{(x^2+y^2+z^2)^{3/2}}
2ux2+2uy2+2uz2=y2+z2+x2+z2+x2+y2(x2+y2+z2)3/2=2(x2+y2+z2)(x2+y2+z2)3/2=2x2+y2+z2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{y^2+z^2 + x^2+z^2 + x^2+y^2}{(x^2+y^2+z^2)^{3/2}} = \frac{2(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{3/2}} = \frac{2}{\sqrt{x^2+y^2+z^2}}
d. If an>0a_n > 0 and an+1an<k<1\frac{a_{n+1}}{a_n} < k < 1, show an\sum a_n converges.
By the ratio test, if limnan+1an<1\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1, the series converges. Since an+1an<k<1\frac{a_{n+1}}{a_n} < k < 1, limnan+1ank<1\lim_{n\to\infty} \frac{a_{n+1}}{a_n} \le k < 1. Therefore, the series an\sum a_n converges.
Show 2nn3+1\sum \frac{2^n}{n^3+1} diverges.
Let an=2nn3+1a_n = \frac{2^n}{n^3+1}. Then an+1an=2n+1(n+1)3+1n3+12n=2n3+1(n+1)3+1=2n3+1n3+3n2+3n+2\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)^3+1} \cdot \frac{n^3+1}{2^n} = 2 \frac{n^3+1}{(n+1)^3+1} = 2 \frac{n^3+1}{n^3+3n^2+3n+2}.
limnan+1an=limn2n3+1n3+3n2+3n+2=2\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} 2 \frac{n^3+1}{n^3+3n^2+3n+2} = 2. Since the limit is greater than 1, by the ratio test, the series diverges.
e. Integrate f(x)=2+5x+3x2+2x3f(x) = 2+5x+3x^2+2x^3 from a=0a=0 to b=2.5b=2.5 using 5 segments.
The width of each segment is h=ban=2.505=0.5h = \frac{b-a}{n} = \frac{2.5-0}{5} = 0.5.
Exact value of the integral: 02.5(2+5x+3x2+2x3)dx=[2x+52x2+x3+12x4]02.5=2(2.5)+52(2.5)2+(2.5)3+12(2.5)4=5+15.625+15.625+4.8828125=41.1328125\int_0^{2.5} (2+5x+3x^2+2x^3)dx = [2x + \frac{5}{2}x^2 + x^3 + \frac{1}{2}x^4]_0^{2.5} = 2(2.5) + \frac{5}{2}(2.5)^2 + (2.5)^3 + \frac{1}{2}(2.5)^4 = 5 + 15.625 + 15.625 + 4.8828125 = 41.1328125.
[i] Mid-ordinate rule:
Midpoints: xi=0.25,0.75,1.25,1.75,2.25x_i = 0.25, 0.75, 1.25, 1.75, 2.25.
f(0.25)=2+5(0.25)+3(0.25)2+2(0.25)3=2+1.25+0.1875+0.03125=3.46875f(0.25) = 2 + 5(0.25) + 3(0.25)^2 + 2(0.25)^3 = 2 + 1.25 + 0.1875 + 0.03125 = 3.46875
f(0.75)=2+5(0.75)+3(0.75)2+2(0.75)3=2+3.75+1.6875+0.84375=8.28125f(0.75) = 2 + 5(0.75) + 3(0.75)^2 + 2(0.75)^3 = 2 + 3.75 + 1.6875 + 0.84375 = 8.28125
f(1.25)=2+5(1.25)+3(1.25)2+2(1.25)3=2+6.25+4.6875+3.90625=16.84375f(1.25) = 2 + 5(1.25) + 3(1.25)^2 + 2(1.25)^3 = 2 + 6.25 + 4.6875 + 3.90625 = 16.84375
f(1.75)=2+5(1.75)+3(1.75)2+2(1.75)3=2+8.75+9.1875+10.71875=30.65625f(1.75) = 2 + 5(1.75) + 3(1.75)^2 + 2(1.75)^3 = 2 + 8.75 + 9.1875 + 10.71875 = 30.65625
f(2.25)=2+5(2.25)+3(2.25)2+2(2.25)3=2+11.25+15.1875+22.78125=51.21875f(2.25) = 2 + 5(2.25) + 3(2.25)^2 + 2(2.25)^3 = 2 + 11.25 + 15.1875 + 22.78125 = 51.21875
Mid-ordinate approximation: hf(xi)=0.5(3.46875+8.28125+16.84375+30.65625+51.21875)=0.5(110.46875)=55.234375h \sum f(x_i) = 0.5(3.46875 + 8.28125 + 16.84375 + 30.65625 + 51.21875) = 0.5(110.46875) = 55.234375.
Relative error: 41.132812555.23437541.1328125=14.101562541.1328125=0.3428134.28%|\frac{41.1328125 - 55.234375}{41.1328125}| = |\frac{-14.1015625}{41.1328125}| = 0.34281 \approx 34.28\%
[ii] Simpson's one-third rule:
Simpson's rule: h3[f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)]\frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4)].
x0=0,x1=0.5,x2=1,x3=1.5,x4=2,x5=2.5x_0 = 0, x_1 = 0.5, x_2 = 1, x_3 = 1.5, x_4 = 2, x_5=2.5
Note that since we are given 5 segments, that indicates 6 points to be used, not 5 as mentioned earlier. Thus the limits of integration must have equal number of segments.
f(0)=2f(0) = 2, f(0.5)=2+5(0.5)+3(0.5)2+2(0.5)3=2+2.5+0.75+0.25=5.5f(0.5) = 2 + 5(0.5) + 3(0.5)^2 + 2(0.5)^3 = 2 + 2.5 + 0.75 + 0.25 = 5.5
f(1)=2+5(1)+3(1)2+2(1)3=2+5+3+2=12f(1) = 2 + 5(1) + 3(1)^2 + 2(1)^3 = 2 + 5 + 3 + 2 = 12
f(1.5)=2+5(1.5)+3(1.5)2+2(1.5)3=2+7.5+6.75+6.75=23.0f(1.5) = 2 + 5(1.5) + 3(1.5)^2 + 2(1.5)^3 = 2 + 7.5 + 6.75 + 6.75 = 23.0
f(2)=2+5(2)+3(2)2+2(2)3=2+10+12+16=40f(2) = 2 + 5(2) + 3(2)^2 + 2(2)^3 = 2 + 10 + 12 + 16 = 40
f(2.5)=2+5(2.5)+3(2.5)2+2(2.5)3=2+12.5+18.75+31.25=64.5f(2.5) = 2 + 5(2.5) + 3(2.5)^2 + 2(2.5)^3 = 2 + 12.5 + 18.75 + 31.25 = 64.5
Simpson's rule with 5 segments (6 points) where h = 0.5
h3[f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+f(x5)]=0.53[2+4(5.5)+2(12)+4(23)+2(40)+64.5]=0.53[2+22+24+92+80+64.5]=0.53[284.5]=47.41666666666667\frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + f(x_5)] = \frac{0.5}{3} [2 + 4(5.5) + 2(12) + 4(23) + 2(40) + 64.5] = \frac{0.5}{3} [2+22+24+92+80+64.5] = \frac{0.5}{3} [284.5] = 47.41666666666667.
Relative error: 41.132812547.4166666666666741.1328125=6.28385416666666541.1328125=0.15277315.28%|\frac{41.1328125 - 47.41666666666667}{41.1328125}| = |\frac{-6.283854166666665}{41.1328125}| = 0.152773 \approx 15.28\%
f. Slopes of the traces to z=104x2y2z = 10-4x^2-y^2 at the point (1,2)(1,2).
Trace 1: y=2y=2, z=104x24z = 10 - 4x^2 - 4. z=64x2z = 6 - 4x^2.
dzdx=8x\frac{dz}{dx} = -8x. At (1,2)(1,2), dzdx=8(1)=8\frac{dz}{dx} = -8(1) = -8.
Trace 2: x=1x=1, z=104y2z = 10 - 4 - y^2. z=6y2z = 6 - y^2.
dzdy=2y\frac{dz}{dy} = -2y. At (1,2)(1,2), dzdy=2(2)=4\frac{dz}{dy} = -2(2) = -4.
g. Radius of convergence for power series n=0n(1)n4n(x+3)n\sum_{n=0}^{\infty} \frac{n(-1)^n}{4^n}(x+3)^n.
Let an=n(1)n4n(x+3)na_n = \frac{n(-1)^n}{4^n}(x+3)^n. Using the ratio test:
limnan+1an=limn(n+1)(1)n+1(x+3)n+14n+14nn(1)n(x+3)n=limnn+1n14(x+3)=x+34\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \lim_{n\to\infty} |\frac{(n+1)(-1)^{n+1}(x+3)^{n+1}}{4^{n+1}} \cdot \frac{4^n}{n(-1)^n(x+3)^n}| = \lim_{n\to\infty} |\frac{n+1}{n} \cdot \frac{1}{4} \cdot (x+3)| = \frac{|x+3|}{4}.
For convergence, x+34<1\frac{|x+3|}{4} < 1. x+3<4|x+3| < 4. Therefore, the radius of convergence is
4.

3. Final Answer

a. z=12x+14y1+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4)
b. Converges if p>1p > 1, diverges if p1p \le 1
c. 2x2+y2+z2\frac{2}{\sqrt{x^2+y^2+z^2}}
d. Proof shown in solution steps, 2nn3+1\sum \frac{2^n}{n^3+1} diverges.
e. [i] 55.234375, relative error: 34.28%
[ii] 47.4167, relative error: 15.28%
f. -8, -4
g. 4

Related problems in "Analysis"

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^...

Definite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24

The problem asks to solve the second-order differential equation $y'' = 20x^3$.

Differential EquationsSecond-Order Differential EquationsIntegrationGeneral Solution
2025/4/24

The problem is to find the second derivative of the function $y = 20x^3$. We need to find $y''$.

DifferentiationPower RuleSecond DerivativeCalculus
2025/4/24

The problem is to solve the differential equation $y''' = 20x^3$.

Differential EquationsIntegration
2025/4/24

We are given a graph of a function and asked to find information about the reciprocal of this functi...

CalculusFunction AnalysisDerivativesAsymptotesMaxima and MinimaGraphing
2025/4/23

The problem asks us to find the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$, and to d...

LimitsAsymptotesRational FunctionsCalculus
2025/4/23

The problem asks for the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$ and the sign of ...

LimitsVertical AsymptotesRational FunctionsCalculus
2025/4/23

The problem asks us to determine what types of asymptotes the function $f(x) = \frac{3x^3 + 2x^2 + x...

AsymptotesRational FunctionsVertical AsymptotesOblique AsymptotesPolynomial Long Division
2025/4/23

The problem defines a function $f(x) = x + \frac{1}{x}$. It asks us to: 1. Determine the domain $D_...

FunctionsDomainOdd FunctionsCalculusDerivativesMonotonicityVariation Table
2025/4/23

The problem asks us to evaluate several integrals and then to perform a partial fraction decompositi...

IntegrationDefinite IntegralsPartial FractionsSubstitutionTrigonometric Functions
2025/4/23