a) y=x⋅sin(2x+1) To find the derivative, we will use the product rule:
(uv)′=u′v+uv′, where u=x and v=sin(2x+1). u′=(x)′=1 v′=(sin(2x+1))′=cos(2x+1)⋅(2x+1)′ To find (2x+1)′, we use the formula (ax)′=axln(a). (2x+1)′=2x+1⋅ln(2)⋅(x+1)′=2x+1ln(2)⋅1=2x+1ln(2) So, v′=cos(2x+1)⋅2x+1ln(2). Now, we can use the product rule:
y′=u′v+uv′=1⋅sin(2x+1)+x⋅cos(2x+1)⋅2x+1ln(2) y′=sin(2x+1)+x⋅2x+1ln(2)⋅cos(2x+1) b) y=x2⋅5x⋅cos(esin(2x)) We have a product of three functions, u=x2, v=5x, and w=cos(esin(2x)). The derivative of a product of three functions is given by:
(uvw)′=u′vw+uv′w+uvw′. u′=(x2)′=2x v′=(5x)′=5xln(5) w′=(cos(esin(2x)))′=−sin(esin(2x))⋅(esin(2x))′ (esin(2x))′=esin(2x)⋅(sin(2x))′ (sin(2x))′=cos(2x)⋅(2x)′ (2x)′=2xln(2) So, w′=−sin(esin(2x))⋅esin(2x)⋅cos(2x)⋅2xln(2) y′=2x⋅5x⋅cos(esin(2x))+x2⋅5xln(5)⋅cos(esin(2x))+x2⋅5x⋅(−sin(esin(2x))⋅esin(2x)⋅cos(2x)⋅2xln(2)) y′=2x⋅5x⋅cos(esin(2x))+x2⋅5xln(5)⋅cos(esin(2x))−x2⋅5x⋅sin(esin(2x))⋅esin(2x)⋅cos(2x)⋅2xln(2)