The problem asks to find the derivative of the following two functions: a) $y = x \cdot \sin(2^{x+1})$ b) $y = x^2 \cdot 5^x \cdot \cos(e^{\sin(2^x)})$

AnalysisDerivativesProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/4/22

1. Problem Description

The problem asks to find the derivative of the following two functions:
a) y=xsin(2x+1)y = x \cdot \sin(2^{x+1})
b) y=x25xcos(esin(2x))y = x^2 \cdot 5^x \cdot \cos(e^{\sin(2^x)})

2. Solution Steps

a) y=xsin(2x+1)y = x \cdot \sin(2^{x+1})
To find the derivative, we will use the product rule:
(uv)=uv+uv(uv)' = u'v + uv', where u=xu = x and v=sin(2x+1)v = \sin(2^{x+1}).
u=(x)=1u' = (x)' = 1
v=(sin(2x+1))=cos(2x+1)(2x+1)v' = (\sin(2^{x+1}))' = \cos(2^{x+1}) \cdot (2^{x+1})'
To find (2x+1)(2^{x+1})', we use the formula (ax)=axln(a)(a^x)' = a^x \ln(a).
(2x+1)=2x+1ln(2)(x+1)=2x+1ln(2)1=2x+1ln(2)(2^{x+1})' = 2^{x+1} \cdot \ln(2) \cdot (x+1)' = 2^{x+1} \ln(2) \cdot 1 = 2^{x+1} \ln(2)
So, v=cos(2x+1)2x+1ln(2)v' = \cos(2^{x+1}) \cdot 2^{x+1} \ln(2).
Now, we can use the product rule:
y=uv+uv=1sin(2x+1)+xcos(2x+1)2x+1ln(2)y' = u'v + uv' = 1 \cdot \sin(2^{x+1}) + x \cdot \cos(2^{x+1}) \cdot 2^{x+1} \ln(2)
y=sin(2x+1)+x2x+1ln(2)cos(2x+1)y' = \sin(2^{x+1}) + x \cdot 2^{x+1} \ln(2) \cdot \cos(2^{x+1})
b) y=x25xcos(esin(2x))y = x^2 \cdot 5^x \cdot \cos(e^{\sin(2^x)})
We have a product of three functions, u=x2u = x^2, v=5xv = 5^x, and w=cos(esin(2x))w = \cos(e^{\sin(2^x)}).
The derivative of a product of three functions is given by:
(uvw)=uvw+uvw+uvw(uvw)' = u'vw + uv'w + uvw'.
u=(x2)=2xu' = (x^2)' = 2x
v=(5x)=5xln(5)v' = (5^x)' = 5^x \ln(5)
w=(cos(esin(2x)))=sin(esin(2x))(esin(2x))w' = (\cos(e^{\sin(2^x)}))' = -\sin(e^{\sin(2^x)}) \cdot (e^{\sin(2^x)})'
(esin(2x))=esin(2x)(sin(2x))(e^{\sin(2^x)})' = e^{\sin(2^x)} \cdot (\sin(2^x))'
(sin(2x))=cos(2x)(2x)(\sin(2^x))' = \cos(2^x) \cdot (2^x)'
(2x)=2xln(2)(2^x)' = 2^x \ln(2)
So, w=sin(esin(2x))esin(2x)cos(2x)2xln(2)w' = -\sin(e^{\sin(2^x)}) \cdot e^{\sin(2^x)} \cdot \cos(2^x) \cdot 2^x \ln(2)
y=2x5xcos(esin(2x))+x25xln(5)cos(esin(2x))+x25x(sin(esin(2x))esin(2x)cos(2x)2xln(2))y' = 2x \cdot 5^x \cdot \cos(e^{\sin(2^x)}) + x^2 \cdot 5^x \ln(5) \cdot \cos(e^{\sin(2^x)}) + x^2 \cdot 5^x \cdot (-\sin(e^{\sin(2^x)}) \cdot e^{\sin(2^x)} \cdot \cos(2^x) \cdot 2^x \ln(2))
y=2x5xcos(esin(2x))+x25xln(5)cos(esin(2x))x25xsin(esin(2x))esin(2x)cos(2x)2xln(2)y' = 2x \cdot 5^x \cdot \cos(e^{\sin(2^x)}) + x^2 \cdot 5^x \ln(5) \cdot \cos(e^{\sin(2^x)}) - x^2 \cdot 5^x \cdot \sin(e^{\sin(2^x)}) \cdot e^{\sin(2^x)} \cdot \cos(2^x) \cdot 2^x \ln(2)

3. Final Answer

a) y=sin(2x+1)+x2x+1ln(2)cos(2x+1)y' = \sin(2^{x+1}) + x \cdot 2^{x+1} \ln(2) \cdot \cos(2^{x+1})
b) y=2x5xcos(esin(2x))+x25xln(5)cos(esin(2x))x25xsin(esin(2x))esin(2x)cos(2x)2xln(2)y' = 2x \cdot 5^x \cdot \cos(e^{\sin(2^x)}) + x^2 \cdot 5^x \ln(5) \cdot \cos(e^{\sin(2^x)}) - x^2 \cdot 5^x \cdot \sin(e^{\sin(2^x)}) \cdot e^{\sin(2^x)} \cdot \cos(2^x) \cdot 2^x \ln(2)

Related problems in "Analysis"

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^...

Definite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24

The problem asks to solve the second-order differential equation $y'' = 20x^3$.

Differential EquationsSecond-Order Differential EquationsIntegrationGeneral Solution
2025/4/24

The problem is to find the second derivative of the function $y = 20x^3$. We need to find $y''$.

DifferentiationPower RuleSecond DerivativeCalculus
2025/4/24

The problem is to solve the differential equation $y''' = 20x^3$.

Differential EquationsIntegration
2025/4/24

We are given a graph of a function and asked to find information about the reciprocal of this functi...

CalculusFunction AnalysisDerivativesAsymptotesMaxima and MinimaGraphing
2025/4/23

The problem asks us to find the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$, and to d...

LimitsAsymptotesRational FunctionsCalculus
2025/4/23

The problem asks for the vertical asymptote of the function $f(x) = \frac{2x}{x+3}$ and the sign of ...

LimitsVertical AsymptotesRational FunctionsCalculus
2025/4/23

The problem asks us to determine what types of asymptotes the function $f(x) = \frac{3x^3 + 2x^2 + x...

AsymptotesRational FunctionsVertical AsymptotesOblique AsymptotesPolynomial Long Division
2025/4/23

The problem defines a function $f(x) = x + \frac{1}{x}$. It asks us to: 1. Determine the domain $D_...

FunctionsDomainOdd FunctionsCalculusDerivativesMonotonicityVariation Table
2025/4/23

The problem asks us to evaluate several integrals and then to perform a partial fraction decompositi...

IntegrationDefinite IntegralsPartial FractionsSubstitutionTrigonometric Functions
2025/4/23