We are given two functions, $g(x) = -\frac{1}{x} + \ln x$ defined on $(0, +\infty)$ and $f(x) = x - (x-1)\ln x$ also defined on $(0, +\infty)$. We are asked to find various properties of these functions, including limits, derivatives, variations, and graphical representation.

AnalysisLimitsDerivativesFunction AnalysisMonotonicityIntermediate Value TheoremLogarithmic Functions
2025/4/25

1. Problem Description

We are given two functions, g(x)=1x+lnxg(x) = -\frac{1}{x} + \ln x defined on (0,+)(0, +\infty) and f(x)=x(x1)lnxf(x) = x - (x-1)\ln x also defined on (0,+)(0, +\infty). We are asked to find various properties of these functions, including limits, derivatives, variations, and graphical representation.

2. Solution Steps

Partie A:

1. Calculate the limits of $g$ at $0^+$ and $+\infty$.

As x0+x \to 0^+, 1x-\frac{1}{x} \to -\infty and lnx\ln x \to -\infty. Therefore,
limx0+g(x)=limx0+(1x+lnx)==\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \left( -\frac{1}{x} + \ln x \right) = -\infty - \infty = -\infty.
As x+x \to +\infty, 1x0-\frac{1}{x} \to 0 and lnx+\ln x \to +\infty. Therefore,
limx+g(x)=limx+(1x+lnx)=0+=+\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left( -\frac{1}{x} + \ln x \right) = 0 + \infty = +\infty.

2. a. Calculate the derivative $g'$ of $g$ on $(0, +\infty)$.

g(x)=ddx(1x+lnx)=ddx(x1)+ddx(lnx)=x2+1x=1x2+1x=1+xx2g'(x) = \frac{d}{dx} \left( -\frac{1}{x} + \ln x \right) = \frac{d}{dx} (-x^{-1}) + \frac{d}{dx} (\ln x) = x^{-2} + \frac{1}{x} = \frac{1}{x^2} + \frac{1}{x} = \frac{1+x}{x^2}.
b. Dress the variation table of gg.
Since x>0x>0, we have x2>0x^2 > 0 and 1+x>01+x > 0, so g(x)=1+xx2>0g'(x) = \frac{1+x}{x^2} > 0. This means g(x)g(x) is strictly increasing on (0,+)(0, +\infty). We know limx0+g(x)=\lim_{x \to 0^+} g(x) = -\infty and limx+g(x)=+\lim_{x \to +\infty} g(x) = +\infty.

3. a. Show that the equation $g(x) = 0$ admits a unique solution $\alpha \in [\frac{3}{2}, 2]$.

Since g(x)g(x) is continuous and strictly increasing on (0,+)(0, +\infty), it admits at most one solution to g(x)=0g(x) = 0. Since limx0+g(x)=\lim_{x \to 0^+} g(x) = -\infty and limx+g(x)=+\lim_{x \to +\infty} g(x) = +\infty, then by the intermediate value theorem, there is a solution to g(x)=0g(x)=0. Thus, the equation g(x)=0g(x)=0 admits a unique solution.
We check the sign of g(x)g(x) at x=32x=\frac{3}{2} and x=2x=2.
g(32)=23+ln(32)0.667+0.405=0.262<0g\left(\frac{3}{2}\right) = -\frac{2}{3} + \ln\left(\frac{3}{2}\right) \approx -0.667 + 0.405 = -0.262 < 0.
g(2)=12+ln(2)0.5+0.693=0.193>0g(2) = -\frac{1}{2} + \ln(2) \approx -0.5 + 0.693 = 0.193 > 0.
Since g(32)<0g(\frac{3}{2}) < 0 and g(2)>0g(2) > 0, and gg is continuous, there exists a value α[32,2]\alpha \in [\frac{3}{2}, 2] such that g(α)=0g(\alpha) = 0. Since gg is strictly increasing, this solution is unique.
b. Deduce the sign of g(x)g(x) on (0,+)(0, +\infty).
Since g(x)g(x) is strictly increasing and g(α)=0g(\alpha) = 0, we have:
g(x)<0g(x) < 0 for x(0,α)x \in (0, \alpha)
g(x)=0g(x) = 0 for x=αx = \alpha
g(x)>0g(x) > 0 for x(α,+)x \in (\alpha, +\infty)
Partie B:

1. Calculate the limits of $f$ at $0^+$ and $+\infty$.

f(x)=x(x1)lnxf(x) = x - (x-1) \ln x.
As x0+x \to 0^+, x0x \to 0 and lnx\ln x \to -\infty.
limx0+f(x)=limx0+[x(x1)lnx]=0limx0+[xlnxlnx]\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} [x - (x-1)\ln x] = 0 - \lim_{x \to 0^+} [x\ln x - \ln x].
We know limx0+xlnx=0\lim_{x \to 0^+} x\ln x = 0. Thus
limx0+f(x)=0(0())=0=\lim_{x \to 0^+} f(x) = 0 - (0 - (-\infty)) = 0 - \infty = -\infty.
As x+x \to +\infty, x+x \to +\infty and lnx+\ln x \to +\infty.
limx+f(x)=limx+[x(x1)lnx]=limx+[xxlnx+lnx]=limx+[x(1lnx)+lnx]\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x - (x-1)\ln x] = \lim_{x \to +\infty} [x - x\ln x + \ln x] = \lim_{x \to +\infty} [x(1 - \ln x) + \ln x].
Since lnx\ln x grows slower than xx, for sufficiently large xx, lnx>1\ln x > 1, so 1lnx<01-\ln x < 0. Thus,
limx+x(1lnx)=\lim_{x \to +\infty} x(1-\ln x) = -\infty and limx+lnx=+\lim_{x \to +\infty} \ln x = +\infty.
However, xx grows faster than lnx\ln x. Thus the limit is -\infty.
limx+f(x)=\lim_{x \to +\infty} f(x) = -\infty.

2. a. Show that the derivative $f'$ of $f$ is $f'(x) = -g(x)$.

f(x)=x(x1)lnx=xxlnx+lnxf(x) = x - (x-1)\ln x = x - x\ln x + \ln x.
f(x)=1(lnx+x1x)+1x=1lnx1+1x=1xlnx=(1x+lnx)=g(x)f'(x) = 1 - (\ln x + x \cdot \frac{1}{x}) + \frac{1}{x} = 1 - \ln x - 1 + \frac{1}{x} = \frac{1}{x} - \ln x = - \left( -\frac{1}{x} + \ln x \right) = -g(x).
b. Draw the variation table of ff.
We know that f(x)=g(x)f'(x) = -g(x).
Since g(x)<0g(x) < 0 for x(0,α)x \in (0, \alpha) and g(x)>0g(x) > 0 for x(α,+)x \in (\alpha, +\infty), then f(x)>0f'(x) > 0 for x(0,α)x \in (0, \alpha) and f(x)<0f'(x) < 0 for x(α,+)x \in (\alpha, +\infty). This implies that ff is increasing on (0,α)(0, \alpha) and decreasing on (α,+)(\alpha, +\infty). Also f(α)=0f'(\alpha) = 0.
Given that α1.7\alpha \approx 1.7 and f(α)1.3f(\alpha) \approx 1.3.

3. On admet que l'équation $f(x)=0$, admet deux solutions $x_0$ et $x_1$ avec $x_0 \in [\frac{1}{2}, 1]$ et $x_1 \in [\frac{7}{2}, 4]$.

a. Étudier la branche infinie à (C). Replace the question with: « Étudier les branches infinies (C). »
We are asked to find the limit limx+f(x)x\lim_{x \to +\infty} \frac{f(x)}{x}.
limx+f(x)x=limx+x(x1)lnxx=limx+xxlnx+lnxx=limx+(1lnx+lnxx)\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x - (x-1)\ln x}{x} = \lim_{x \to +\infty} \frac{x - x\ln x + \ln x}{x} = \lim_{x \to +\infty} \left( 1 - \ln x + \frac{\ln x}{x} \right).
Since limx+lnxx=0\lim_{x \to +\infty} \frac{\ln x}{x} = 0, then limx+f(x)x=1+0=\lim_{x \to +\infty} \frac{f(x)}{x} = 1 - \infty + 0 = -\infty.
Since the limit is -\infty, there is a parabolic branch in the direction of the y-axis.
b. Trace the curve (C).
The curve (C) can be sketched with the information gathered.

4. Trace the curve (C') of the function $h$ defined by $h(x)=-f(x)$ in the same coordinate system as (C).

Since h(x)=f(x)h(x) = -f(x), the curve (C') is a reflection of (C) across the x-axis.

3. Final Answer

Partie A:

1. $\lim_{x \to 0^+} g(x) = -\infty$, $\lim_{x \to +\infty} g(x) = +\infty$

2. a. $g'(x) = \frac{1+x}{x^2}$

b. g(x)g(x) is strictly increasing on (0,+)(0, +\infty)

3. a. $\alpha \in [\frac{3}{2}, 2]$ is the unique solution to $g(x) = 0$

b. g(x)<0g(x) < 0 for x(0,α)x \in (0, \alpha), g(x)=0g(x) = 0 for x=αx = \alpha, g(x)>0g(x) > 0 for x(α,+)x \in (\alpha, +\infty)
Partie B:

1. $\lim_{x \to 0^+} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = -\infty$

2. a. $f'(x) = -g(x)$

3. a. There is a parabolic branch in the direction of the y-axis.

Related problems in "Analysis"

The problem asks us to find the volume generated by rotating the area bounded by the axes and the cu...

CalculusVolume of RevolutionIntegrationTrigonometryDefinite IntegralsDisk Method
2025/4/25

The problem asks us to find the volume generated by rotating the area bounded by the axes and the cu...

CalculusIntegrationVolume of RevolutionDisk MethodTrigonometric Functions
2025/4/25

We are given the function $f(x) = \ln|x^2-1|$. We need to find the domain, intercepts, limits, deriv...

CalculusDomainLimitsDerivativesIncreasing/Decreasing IntervalsConcavityGraphing
2025/4/25

We need to find the first-order partial derivatives for the function $f(x, y) = \frac{x^2 - y^2}{xy}...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/25

The problem asks us to analyze the function $f(u, v) = e^{uv}$.

Partial DerivativesChain RuleMultivariable CalculusExponential Function
2025/4/25

The problem asks to analyze the function $f(x, y) = e^x \cos y$.

Partial DerivativesMultivariable CalculusLaplacianHarmonic Function
2025/4/25

We are asked to find the partial derivatives of the function $f(x, y) = (4x - y^2)^{3/2}$.

Partial DerivativesChain RuleMultivariable Calculus
2025/4/25

The problem asks us to determine the natural domain of the function $f(x, y)$ given some example fun...

FunctionsDomainMultivariable FunctionsAmbiguity
2025/4/24

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin^2 x + 3 \cos^...

Definite IntegralTrigonometric FunctionsSubstitutionIntegration Techniques
2025/4/24

The problem asks to solve the second-order differential equation $y'' = 20x^3$.

Differential EquationsSecond-Order Differential EquationsIntegrationGeneral Solution
2025/4/24