We can rewrite the denominator using the identity a sin x − b cos x = R sin ( x − α ) a \sin x - b \cos x = R \sin(x - \alpha) a sin x − b cos x = R sin ( x − α ) , where R = a 2 + b 2 R = \sqrt{a^2 + b^2} R = a 2 + b 2 and tan α = b a \tan \alpha = \frac{b}{a} tan α = a b . In our case, a = 1 a = 1 a = 1 and b = 1 b = 1 b = 1 , so R = 1 2 + 1 2 = 2 R = \sqrt{1^2 + 1^2} = \sqrt{2} R = 1 2 + 1 2 = 2 and tan α = 1 1 = 1 \tan \alpha = \frac{1}{1} = 1 tan α = 1 1 = 1 , which means α = π 4 \alpha = \frac{\pi}{4} α = 4 π . Therefore, we have:
sin x − cos x = 2 sin ( x − π 4 ) \sin x - \cos x = \sqrt{2} \sin(x - \frac{\pi}{4}) sin x − cos x = 2 sin ( x − 4 π ) .
Thus, the integral becomes:
∫ 1 2 sin ( x − π 4 ) d x = 1 2 ∫ csc ( x − π 4 ) d x \int \frac{1}{\sqrt{2} \sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx ∫ 2 s i n ( x − 4 π ) 1 d x = 2 1 ∫ csc ( x − 4 π ) d x .
We know that
∫ csc ( u ) d u = − ln ∣ csc ( u ) + cot ( u ) ∣ + C \int \csc(u) du = -\ln |\csc(u) + \cot(u)| + C ∫ csc ( u ) d u = − ln ∣ csc ( u ) + cot ( u ) ∣ + C .
So,
1 2 ∫ csc ( x − π 4 ) d x = 1 2 ( − ln ∣ csc ( x − π 4 ) + cot ( x − π 4 ) ∣ ) + C \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (-\ln |\csc(x - \frac{\pi}{4}) + \cot(x - \frac{\pi}{4})|) + C 2 1 ∫ csc ( x − 4 π ) d x = 2 1 ( − ln ∣ csc ( x − 4 π ) + cot ( x − 4 π ) ∣ ) + C .
Also, we have another form for the integral of csc u \csc u csc u : ∫ csc ( u ) d u = − ln ∣ tan ( u 2 ) ∣ + C \int \csc(u) du = -\ln |\tan(\frac{u}{2})| + C ∫ csc ( u ) d u = − ln ∣ tan ( 2 u ) ∣ + C So,
1 2 ∫ csc ( x − π 4 ) d x = 1 2 ( − ln ∣ tan ( x − π 4 2 ) ∣ ) + C = − 1 2 ln ∣ tan ( x 2 − π 8 ) ∣ + C \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (-\ln |\tan(\frac{x - \frac{\pi}{4}}{2})|) + C = -\frac{1}{\sqrt{2}} \ln |\tan(\frac{x}{2} - \frac{\pi}{8})| + C 2 1 ∫ csc ( x − 4 π ) d x = 2 1 ( − ln ∣ tan ( 2 x − 4 π ) ∣ ) + C = − 2 1 ln ∣ tan ( 2 x − 8 π ) ∣ + C .