We are asked to solve the integration: $\int \frac{1}{\sin x - \cos x} dx$.

AnalysisIntegrationTrigonometric IntegralsCalculusDefinite Integrals
2025/3/17

1. Problem Description

We are asked to solve the integration: 1sinxcosxdx\int \frac{1}{\sin x - \cos x} dx.

2. Solution Steps

We can rewrite the denominator using the identity asinxbcosx=Rsin(xα)a \sin x - b \cos x = R \sin(x - \alpha), where R=a2+b2R = \sqrt{a^2 + b^2} and tanα=ba\tan \alpha = \frac{b}{a}. In our case, a=1a = 1 and b=1b = 1, so R=12+12=2R = \sqrt{1^2 + 1^2} = \sqrt{2} and tanα=11=1\tan \alpha = \frac{1}{1} = 1, which means α=π4\alpha = \frac{\pi}{4}.
Therefore, we have:
sinxcosx=2sin(xπ4)\sin x - \cos x = \sqrt{2} \sin(x - \frac{\pi}{4}).
Thus, the integral becomes:
12sin(xπ4)dx=12csc(xπ4)dx\int \frac{1}{\sqrt{2} \sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx.
We know that
csc(u)du=lncsc(u)+cot(u)+C\int \csc(u) du = -\ln |\csc(u) + \cot(u)| + C.
So,
12csc(xπ4)dx=12(lncsc(xπ4)+cot(xπ4))+C\frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (-\ln |\csc(x - \frac{\pi}{4}) + \cot(x - \frac{\pi}{4})|) + C.
Also, we have another form for the integral of cscu\csc u:
csc(u)du=lntan(u2)+C\int \csc(u) du = -\ln |\tan(\frac{u}{2})| + C
So,
12csc(xπ4)dx=12(lntan(xπ42))+C=12lntan(x2π8)+C\frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (-\ln |\tan(\frac{x - \frac{\pi}{4}}{2})|) + C = -\frac{1}{\sqrt{2}} \ln |\tan(\frac{x}{2} - \frac{\pi}{8})| + C.

3. Final Answer

The solution to the integral is:
12lntan(x2π8)+C-\frac{1}{\sqrt{2}} \ln |\tan(\frac{x}{2} - \frac{\pi}{8})| + C.
Alternatively,
12lncsc(xπ4)+cot(xπ4)+C-\frac{1}{\sqrt{2}} \ln |\csc(x - \frac{\pi}{4}) + \cot(x - \frac{\pi}{4})| + C.

Related problems in "Analysis"

The question asks how the domains of the pieces of a piecewise-defined function relate to the entire...

Piecewise FunctionsDomainFunction Definition
2025/4/18

Given the function $f(x) = \frac{x^2 + 2x + 1}{x-1}$, we are asked to: 1) Find real numbers $a$, $b$...

LimitsDerivativesTable of VariationsRational Functions
2025/4/17

The problem asks us to analyze the function $f(x) = 5 \cdot (\frac{1}{2})^x$ and graph it.

Exponential FunctionsFunction AnalysisGraphing
2025/4/17

We are given two functions: $f(x) = x + 2 + \frac{4}{x-1}$ and $g(x) = x \ln x$. We need to study th...

CalculusDerivativesFunction AnalysisIncreasing/Decreasing FunctionsCritical Points
2025/4/16

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14