We are asked to solve the integration: $\int \frac{1}{\sin x - \cos x} dx$.

AnalysisIntegrationTrigonometric IntegralsCalculusDefinite Integrals
2025/3/17

1. Problem Description

We are asked to solve the integration: 1sinxcosxdx\int \frac{1}{\sin x - \cos x} dx.

2. Solution Steps

We can rewrite the denominator using the identity asinxbcosx=Rsin(xα)a \sin x - b \cos x = R \sin(x - \alpha), where R=a2+b2R = \sqrt{a^2 + b^2} and tanα=ba\tan \alpha = \frac{b}{a}. In our case, a=1a = 1 and b=1b = 1, so R=12+12=2R = \sqrt{1^2 + 1^2} = \sqrt{2} and tanα=11=1\tan \alpha = \frac{1}{1} = 1, which means α=π4\alpha = \frac{\pi}{4}.
Therefore, we have:
sinxcosx=2sin(xπ4)\sin x - \cos x = \sqrt{2} \sin(x - \frac{\pi}{4}).
Thus, the integral becomes:
12sin(xπ4)dx=12csc(xπ4)dx\int \frac{1}{\sqrt{2} \sin(x - \frac{\pi}{4})} dx = \frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx.
We know that
csc(u)du=lncsc(u)+cot(u)+C\int \csc(u) du = -\ln |\csc(u) + \cot(u)| + C.
So,
12csc(xπ4)dx=12(lncsc(xπ4)+cot(xπ4))+C\frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (-\ln |\csc(x - \frac{\pi}{4}) + \cot(x - \frac{\pi}{4})|) + C.
Also, we have another form for the integral of cscu\csc u:
csc(u)du=lntan(u2)+C\int \csc(u) du = -\ln |\tan(\frac{u}{2})| + C
So,
12csc(xπ4)dx=12(lntan(xπ42))+C=12lntan(x2π8)+C\frac{1}{\sqrt{2}} \int \csc(x - \frac{\pi}{4}) dx = \frac{1}{\sqrt{2}} (-\ln |\tan(\frac{x - \frac{\pi}{4}}{2})|) + C = -\frac{1}{\sqrt{2}} \ln |\tan(\frac{x}{2} - \frac{\pi}{8})| + C.

3. Final Answer

The solution to the integral is:
12lntan(x2π8)+C-\frac{1}{\sqrt{2}} \ln |\tan(\frac{x}{2} - \frac{\pi}{8})| + C.
Alternatively,
12lncsc(xπ4)+cot(xπ4)+C-\frac{1}{\sqrt{2}} \ln |\csc(x - \frac{\pi}{4}) + \cot(x - \frac{\pi}{4})| + C.

Related problems in "Analysis"

The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find th...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15

The problem asks us to draw the graph of the function $y = \sin^{-1}(-\sin x)$.

TrigonometryInverse Trigonometric FunctionsGraphingPeriodic Functions
2025/6/14

We are asked to determine whether the function $y = \sqrt{4-x^2} - 2x^2$ is an even function, an odd...

Function AnalysisEven and Odd FunctionsDomain of a FunctionSquare Root Function
2025/6/14

We need to evaluate the limit of the given expression as $x$ approaches 3: $$ \lim_{x\to 3} \frac{9-...

LimitsCalculusDirect Substitution
2025/6/14

We are asked to evaluate the integral: $I = \int \frac{2x+1}{2x+3} dx$

IntegrationDefinite IntegralsSubstitution
2025/6/14

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11