a) Determine the domain of definition of f. The function f(x)=2x−1+ln(x+1x) is defined if x+1x>0. This inequality is satisfied if both x>0 and x+1>0 or both x<0 and x+1<0. If x>0, then x+1>1>0, so the inequality holds for x>0. If x<0, we need x+1<0, so x<−1. Thus, the domain D=(−∞,−1)∪(0,+∞). Calculate limits at the boundaries.
limx→−∞f(x)=limx→−∞(2x−1+ln(x+1x))=limx→−∞(2x−1+ln(1+x11))=−∞−1+ln(1)=−∞. limx→−1−f(x)=limx→−1−(2x−1+ln(x+1x))=2(−1)−1+limx→−1−ln(x+1x)=−3+limx→−1−ln(x+1−1). Since x→−1− then x+1→0−, therefore x+1−1→+∞, and ln(x+1−1)→+∞. So limx→−1−f(x)=+∞. Therefore x=−1 is a vertical asymptote. limx→0+f(x)=limx→0+(2x−1+ln(x+1x))=0−1+limx→0+ln(x+1x)=−1+limx→0+ln(1x)=−1−∞=−∞. So x=0 is a vertical asymptote. limx→+∞f(x)=limx→+∞(2x−1+ln(x+1x))=limx→+∞(2x−1+ln(1+x11))=limx→+∞(2x−1+ln(1))=limx→+∞(2x−1)=+∞. b) Study the sign of f′(x). f′(x)=2+xx+1⋅(x+1)2(x+1)−x=2+xx+1⋅(x+1)21=2+x(x+1)1=x(x+1)2x(x+1)+1=x(x+1)2x2+2x+1. Since 2x2+2x+1 has discriminant Δ=4−8=−4<0, so 2x2+2x+1>0 for all x. Thus the sign of f′(x) depends on x(x+1). If x∈(−∞,−1), then x<−1, so x<0 and x+1<0, thus x(x+1)>0. Therefore f′(x)>0. If x∈(0,+∞), then x>0 and x+1>0, thus x(x+1)>0. Therefore f′(x)>0. Thus, f′(x)>0 for all x∈D. f is strictly increasing on (−∞,−1) and (0,+∞). There are no local extrema since the function is increasing.
c) Show that y=2x−1 is an oblique asymptote of (C). limx→+∞(f(x)−(2x−1))=limx→+∞(2x−1+ln(x+1x)−(2x−1))=limx→+∞ln(x+1x)=limx→+∞ln(1+x11)=ln(1)=0. So y=2x−1 is an oblique asymptote when x→+∞. Relative position of (C) and (L).
Consider f(x)−(2x−1)=ln(x+1x). If x>0, then x+1x<1, so ln(x+1x)<0. Thus, f(x)<2x−1. Therefore (C) is below (L). d) Show that f(x)=0 has a unique solution a∈(0,+∞). Since f(x) is continuous and strictly increasing on (0,+∞) and limx→0+f(x)=−∞ and limx→+∞f(x)=+∞, there exists a unique a∈(0,+∞) such that f(a)=0. Find the approximate solution to within 10−2. f(1)=2−1+ln(21)=1−ln(2)≈1−0.693=0.307>0. f(0.5)=2(0.5)−1+ln(1.50.5)=0+ln(31)=−ln(3)≈−1.099<0. f(0.75)=2(0.75)−1+ln(1.750.75)=1.5−1+ln(73)=0.5+ln(3)−ln(7)≈0.5+1.099−1.946=−0.347<0. f(0.8)=2(0.8)−1+ln(1.80.8)=1.6−1+ln(94)=0.6+2ln(2)−2ln(3)≈0.6+2(0.693)−2(1.099)=0.6+1.386−2.198=−0.212<0. f(0.9)=2(0.9)−1+ln(1.90.9)=1.8−1+ln(199)=0.8+ln(9)−ln(19)≈0.8+2.197−2.944=0.053>0. f(0.89)=2(0.89)−1+ln(1.890.89)=1.78−1+ln(18989)≈0.78+ln(0.4708)≈0.78−0.7538=0.0262>0. f(0.88)=2(0.88)−1+ln(1.880.88)=1.76−1+ln(18888)=0.76+ln(0.468)≈0.76−0.7583=0.0017>0 f(0.87)=2(0.87)−1+ln(1.870.87)=1.74−1+ln(18787)=0.74+ln(0.4652)≈0.74−0.7642=−0.0242<0 Therefore a≈0.88 to the nearest 10−2.