The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find the domain, limits at the boundaries, vertical asymptotes of the graph (C). Next, study the sign of $f'(x)$ knowing that $(x+1) > 0$ for all $x$ in the domain. Calculate extreme values and create a table of variation. Show that the line $(L): y = 2x - 1$ is an oblique asymptote of (C) and find the relative position of (C) and (L). Show the equation $f(x) = 0$ has a unique solution $a \in (0, +\infty)$ and find the approximate solution accurate to $10^{-2}$. Finally, draw the graph (C) and all asymptotes.

AnalysisFunction AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15

1. Problem Description

The problem involves analyzing the function f(x)=2x1+ln(xx+1)f(x) = 2x - 1 + \ln(\frac{x}{x+1}). It asks to find the domain, limits at the boundaries, vertical asymptotes of the graph (C). Next, study the sign of f(x)f'(x) knowing that (x+1)>0(x+1) > 0 for all xx in the domain. Calculate extreme values and create a table of variation. Show that the line (L):y=2x1(L): y = 2x - 1 is an oblique asymptote of (C) and find the relative position of (C) and (L). Show the equation f(x)=0f(x) = 0 has a unique solution a(0,+)a \in (0, +\infty) and find the approximate solution accurate to 10210^{-2}. Finally, draw the graph (C) and all asymptotes.

2. Solution Steps

a) Determine the domain of definition of ff.
The function f(x)=2x1+ln(xx+1)f(x) = 2x - 1 + \ln(\frac{x}{x+1}) is defined if xx+1>0\frac{x}{x+1} > 0.
This inequality is satisfied if both x>0x > 0 and x+1>0x + 1 > 0 or both x<0x < 0 and x+1<0x+1 < 0.
If x>0x > 0, then x+1>1>0x + 1 > 1 > 0, so the inequality holds for x>0x > 0.
If x<0x < 0, we need x+1<0x + 1 < 0, so x<1x < -1.
Thus, the domain D=(,1)(0,+)D = (-\infty, -1) \cup (0, +\infty).
Calculate limits at the boundaries.
limxf(x)=limx(2x1+ln(xx+1))=limx(2x1+ln(11+1x))=1+ln(1)=\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2x - 1 + \ln(\frac{x}{x+1})) = \lim_{x \to -\infty} (2x - 1 + \ln(\frac{1}{1+\frac{1}{x}})) = -\infty - 1 + \ln(1) = -\infty.
limx1f(x)=limx1(2x1+ln(xx+1))=2(1)1+limx1ln(xx+1)=3+limx1ln(1x+1)\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (2x - 1 + \ln(\frac{x}{x+1})) = 2(-1) - 1 + \lim_{x \to -1^-} \ln(\frac{x}{x+1}) = -3 + \lim_{x \to -1^-} \ln(\frac{-1}{x+1}).
Since x1x \to -1^- then x+10x+1 \to 0^-, therefore 1x+1+\frac{-1}{x+1} \to +\infty, and ln(1x+1)+\ln(\frac{-1}{x+1}) \to +\infty.
So limx1f(x)=+\lim_{x \to -1^-} f(x) = +\infty. Therefore x=1x = -1 is a vertical asymptote.
limx0+f(x)=limx0+(2x1+ln(xx+1))=01+limx0+ln(xx+1)=1+limx0+ln(x1)=1=\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2x - 1 + \ln(\frac{x}{x+1})) = 0 - 1 + \lim_{x \to 0^+} \ln(\frac{x}{x+1}) = -1 + \lim_{x \to 0^+} \ln(\frac{x}{1}) = -1 - \infty = -\infty.
So x=0x = 0 is a vertical asymptote.
limx+f(x)=limx+(2x1+ln(xx+1))=limx+(2x1+ln(11+1x))=limx+(2x1+ln(1))=limx+(2x1)=+\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (2x - 1 + \ln(\frac{x}{x+1})) = \lim_{x \to +\infty} (2x - 1 + \ln(\frac{1}{1+\frac{1}{x}})) = \lim_{x \to +\infty} (2x - 1 + \ln(1) ) = \lim_{x \to +\infty} (2x - 1) = +\infty.
b) Study the sign of f(x)f'(x).
f(x)=2+x+1x(x+1)x(x+1)2=2+x+1x1(x+1)2=2+1x(x+1)=2x(x+1)+1x(x+1)=2x2+2x+1x(x+1)f'(x) = 2 + \frac{x+1}{x} \cdot \frac{(x+1) - x}{(x+1)^2} = 2 + \frac{x+1}{x} \cdot \frac{1}{(x+1)^2} = 2 + \frac{1}{x(x+1)} = \frac{2x(x+1) + 1}{x(x+1)} = \frac{2x^2 + 2x + 1}{x(x+1)}.
Since 2x2+2x+12x^2 + 2x + 1 has discriminant Δ=48=4<0\Delta = 4 - 8 = -4 < 0, so 2x2+2x+1>02x^2 + 2x + 1 > 0 for all xx. Thus the sign of f(x)f'(x) depends on x(x+1)x(x+1).
If x(,1)x \in (-\infty, -1), then x<1x < -1, so x<0x < 0 and x+1<0x+1 < 0, thus x(x+1)>0x(x+1) > 0. Therefore f(x)>0f'(x) > 0.
If x(0,+)x \in (0, +\infty), then x>0x > 0 and x+1>0x+1 > 0, thus x(x+1)>0x(x+1) > 0. Therefore f(x)>0f'(x) > 0.
Thus, f(x)>0f'(x) > 0 for all xDx \in D.
ff is strictly increasing on (,1)(-\infty, -1) and (0,+)(0, +\infty).
There are no local extrema since the function is increasing.
c) Show that y=2x1y = 2x - 1 is an oblique asymptote of (C).
limx+(f(x)(2x1))=limx+(2x1+ln(xx+1)(2x1))=limx+ln(xx+1)=limx+ln(11+1x)=ln(1)=0\lim_{x \to +\infty} (f(x) - (2x - 1)) = \lim_{x \to +\infty} (2x - 1 + \ln(\frac{x}{x+1}) - (2x - 1)) = \lim_{x \to +\infty} \ln(\frac{x}{x+1}) = \lim_{x \to +\infty} \ln(\frac{1}{1+\frac{1}{x}}) = \ln(1) = 0.
So y=2x1y = 2x - 1 is an oblique asymptote when x+x \to +\infty.
Relative position of (C) and (L).
Consider f(x)(2x1)=ln(xx+1)f(x) - (2x - 1) = \ln(\frac{x}{x+1}).
If x>0x > 0, then xx+1<1\frac{x}{x+1} < 1, so ln(xx+1)<0\ln(\frac{x}{x+1}) < 0. Thus, f(x)<2x1f(x) < 2x - 1. Therefore (C) is below (L).
d) Show that f(x)=0f(x) = 0 has a unique solution a(0,+)a \in (0, +\infty).
Since f(x)f(x) is continuous and strictly increasing on (0,+)(0, +\infty) and limx0+f(x)=\lim_{x \to 0^+} f(x) = -\infty and limx+f(x)=+\lim_{x \to +\infty} f(x) = +\infty, there exists a unique a(0,+)a \in (0, +\infty) such that f(a)=0f(a) = 0.
Find the approximate solution to within 10210^{-2}.
f(1)=21+ln(12)=1ln(2)10.693=0.307>0f(1) = 2 - 1 + \ln(\frac{1}{2}) = 1 - \ln(2) \approx 1 - 0.693 = 0.307 > 0.
f(0.5)=2(0.5)1+ln(0.51.5)=0+ln(13)=ln(3)1.099<0f(0.5) = 2(0.5) - 1 + \ln(\frac{0.5}{1.5}) = 0 + \ln(\frac{1}{3}) = -\ln(3) \approx -1.099 < 0.
f(0.75)=2(0.75)1+ln(0.751.75)=1.51+ln(37)=0.5+ln(3)ln(7)0.5+1.0991.946=0.347<0f(0.75) = 2(0.75) - 1 + \ln(\frac{0.75}{1.75}) = 1.5 - 1 + \ln(\frac{3}{7}) = 0.5 + \ln(3) - \ln(7) \approx 0.5 + 1.099 - 1.946 = -0.347 < 0.
f(0.8)=2(0.8)1+ln(0.81.8)=1.61+ln(49)=0.6+2ln(2)2ln(3)0.6+2(0.693)2(1.099)=0.6+1.3862.198=0.212<0f(0.8) = 2(0.8) - 1 + \ln(\frac{0.8}{1.8}) = 1.6 - 1 + \ln(\frac{4}{9}) = 0.6 + 2\ln(2) - 2\ln(3) \approx 0.6 + 2(0.693) - 2(1.099) = 0.6 + 1.386 - 2.198 = -0.212 < 0.
f(0.9)=2(0.9)1+ln(0.91.9)=1.81+ln(919)=0.8+ln(9)ln(19)0.8+2.1972.944=0.053>0f(0.9) = 2(0.9) - 1 + \ln(\frac{0.9}{1.9}) = 1.8 - 1 + \ln(\frac{9}{19}) = 0.8 + \ln(9) - \ln(19) \approx 0.8 + 2.197 - 2.944 = 0.053 > 0.
f(0.89)=2(0.89)1+ln(0.891.89)=1.781+ln(89189)0.78+ln(0.4708)0.780.7538=0.0262>0f(0.89) = 2(0.89) - 1 + \ln(\frac{0.89}{1.89}) = 1.78 - 1 + \ln(\frac{89}{189}) \approx 0.78 + \ln(0.4708) \approx 0.78 - 0.7538 = 0.0262 > 0.
f(0.88)=2(0.88)1+ln(0.881.88)=1.761+ln(88188)=0.76+ln(0.468)0.760.7583=0.0017>0f(0.88) = 2(0.88) - 1 + \ln(\frac{0.88}{1.88}) = 1.76 - 1 + \ln(\frac{88}{188}) = 0.76 + \ln(0.468) \approx 0.76 - 0.7583 = 0.0017 > 0
f(0.87)=2(0.87)1+ln(0.871.87)=1.741+ln(87187)=0.74+ln(0.4652)0.740.7642=0.0242<0f(0.87) = 2(0.87) - 1 + \ln(\frac{0.87}{1.87}) = 1.74 - 1 + \ln(\frac{87}{187}) = 0.74 + \ln(0.4652) \approx 0.74 - 0.7642 = -0.0242 < 0
Therefore a0.88a \approx 0.88 to the nearest 10210^{-2}.

3. Final Answer

a) Domain: (,1)(0,+)(-\infty, -1) \cup (0, +\infty). Vertical asymptotes: x=1x = -1, x=0x = 0.
b) f(x)>0f'(x) > 0 for all xx in the domain.
c) Oblique asymptote: y=2x1y = 2x - 1. (C) is below (L) for x>0x > 0.
d) Approximate solution: a0.88a \approx 0.88.
e) The graph of (C) and the asymptotes can be sketched with the information above.

Related problems in "Analysis"

The problem asks us to draw the graph of the function $y = \sin^{-1}(-\sin x)$.

TrigonometryInverse Trigonometric FunctionsGraphingPeriodic Functions
2025/6/14

We are asked to determine whether the function $y = \sqrt{4-x^2} - 2x^2$ is an even function, an odd...

Function AnalysisEven and Odd FunctionsDomain of a FunctionSquare Root Function
2025/6/14

We need to evaluate the limit of the given expression as $x$ approaches 3: $$ \lim_{x\to 3} \frac{9-...

LimitsCalculusDirect Substitution
2025/6/14

We are asked to evaluate the integral: $I = \int \frac{2x+1}{2x+3} dx$

IntegrationDefinite IntegralsSubstitution
2025/6/14

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11