First, rewrite the terms in the integrand using exponents:
∫ ( x − 1 2 x + 2 x ) d x = ∫ ( x 1 / 2 − 1 2 x + 2 x − 1 / 2 ) d x \int (\sqrt{x} - \frac{1}{2}x + \frac{2}{\sqrt{x}}) dx = \int (x^{1/2} - \frac{1}{2}x + 2x^{-1/2}) dx ∫ ( x − 2 1 x + x 2 ) d x = ∫ ( x 1/2 − 2 1 x + 2 x − 1/2 ) d x .
Now, we apply the power rule for integration to each term. The power rule states that ∫ x n d x = x n + 1 n + 1 + C \int x^n dx = \frac{x^{n+1}}{n+1} + C ∫ x n d x = n + 1 x n + 1 + C , where n ≠ − 1 n \neq -1 n = − 1 . Applying the power rule to each term, we get:
∫ x 1 / 2 d x = x 1 / 2 + 1 1 / 2 + 1 = x 3 / 2 3 / 2 = 2 3 x 3 / 2 \int x^{1/2} dx = \frac{x^{1/2 + 1}}{1/2 + 1} = \frac{x^{3/2}}{3/2} = \frac{2}{3}x^{3/2} ∫ x 1/2 d x = 1/2 + 1 x 1/2 + 1 = 3/2 x 3/2 = 3 2 x 3/2 ∫ − 1 2 x d x = − 1 2 ∫ x 1 d x = − 1 2 x 1 + 1 1 + 1 = − 1 2 x 2 2 = − 1 4 x 2 \int -\frac{1}{2}x dx = -\frac{1}{2} \int x^1 dx = -\frac{1}{2} \frac{x^{1+1}}{1+1} = -\frac{1}{2} \frac{x^2}{2} = -\frac{1}{4}x^2 ∫ − 2 1 x d x = − 2 1 ∫ x 1 d x = − 2 1 1 + 1 x 1 + 1 = − 2 1 2 x 2 = − 4 1 x 2 ∫ 2 x − 1 / 2 d x = 2 ∫ x − 1 / 2 d x = 2 x − 1 / 2 + 1 − 1 / 2 + 1 = 2 x 1 / 2 1 / 2 = 2 ⋅ 2 x 1 / 2 = 4 x 1 / 2 \int 2x^{-1/2} dx = 2 \int x^{-1/2} dx = 2 \frac{x^{-1/2 + 1}}{-1/2 + 1} = 2 \frac{x^{1/2}}{1/2} = 2 \cdot 2 x^{1/2} = 4x^{1/2} ∫ 2 x − 1/2 d x = 2 ∫ x − 1/2 d x = 2 − 1/2 + 1 x − 1/2 + 1 = 2 1/2 x 1/2 = 2 ⋅ 2 x 1/2 = 4 x 1/2
Adding the results and the constant of integration C C C , we have: ∫ ( x 1 / 2 − 1 2 x + 2 x − 1 / 2 ) d x = 2 3 x 3 / 2 − 1 4 x 2 + 4 x 1 / 2 + C \int (x^{1/2} - \frac{1}{2}x + 2x^{-1/2}) dx = \frac{2}{3}x^{3/2} - \frac{1}{4}x^2 + 4x^{1/2} + C ∫ ( x 1/2 − 2 1 x + 2 x − 1/2 ) d x = 3 2 x 3/2 − 4 1 x 2 + 4 x 1/2 + C We can rewrite this in terms of square roots:
2 3 x 3 / 2 − 1 4 x 2 + 4 x 1 / 2 + C = 2 3 x x − 1 4 x 2 + 4 x + C \frac{2}{3}x^{3/2} - \frac{1}{4}x^2 + 4x^{1/2} + C = \frac{2}{3}x\sqrt{x} - \frac{1}{4}x^2 + 4\sqrt{x} + C 3 2 x 3/2 − 4 1 x 2 + 4 x 1/2 + C = 3 2 x x − 4 1 x 2 + 4 x + C .