三角形の3辺の長さがそれぞれ $a = \sqrt{13}$, $b=5$, $c=3\sqrt{2}$ であるとき、$\cos A$ の値と角 $A$ の大きさを求める問題です。

幾何学三角形余弦定理角度辺の長さ三角比
2025/3/18

1. 問題の内容

三角形の3辺の長さがそれぞれ a=13a = \sqrt{13}, b=5b=5, c=32c=3\sqrt{2} であるとき、cosA\cos A の値と角 AA の大きさを求める問題です。

2. 解き方の手順

余弦定理を用いて cosA\cos A の値を求めます。余弦定理は以下の式で表されます。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A
この式を cosA\cos A について解くと、以下のようになります。
cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}
与えられた値を代入します。
a=13a = \sqrt{13}, b=5b=5, c=32c=3\sqrt{2} なので、
cosA=52+(32)2(13)22532=25+1813302=30302=12\cos A = \frac{5^2 + (3\sqrt{2})^2 - (\sqrt{13})^2}{2 \cdot 5 \cdot 3\sqrt{2}} = \frac{25 + 18 - 13}{30\sqrt{2}} = \frac{30}{30\sqrt{2}} = \frac{1}{\sqrt{2}}
cosA=12\cos A = \frac{1}{\sqrt{2}} であるので、 A=45A = 45^\circ (または π4\frac{\pi}{4} ラジアン) となります。

3. 最終的な答え

cosA=12\cos A = \frac{1}{\sqrt{2}}
A=45A = 45^\circ

「幾何学」の関連問題

ベクトル $\vec{a} = (2, 0, -1)$ とベクトル $\vec{b} = (1, 3, -2)$ の両方に垂直で、大きさが $\sqrt{6}$ であるベクトル $\vec{p}$ を...

ベクトル内積ベクトルの垂直ベクトルの大きさ空間ベクトル
2025/5/9

四面体OABCにおいて、辺OAの中点をD、辺BCの中点をEとする。線分DEの中点をM、三角形ABCの重心をGとするとき、3点O, M, Gが一直線上にあることを証明する。

ベクトル空間図形四面体重心位置ベクトル
2025/5/9

点 $(2, 3)$ を $x$ 軸方向に $-1$、 $y$ 軸方向に $4$ だけ平行移動したときの、移動後の点の座標を求める問題です。

座標平行移動点の移動
2025/5/9

直線 $2x-y+2=0$ を $l$ とする。直線 $l$ に関して点 $A(2, 1)$ と対称な点 $B$ の座標を求める。

座標平面直線対称点連立方程式
2025/5/8

点A(3, -1)を通り、直線 $3x + 2y + 1 = 0$ に垂直な直線の方程式と、平行な直線の方程式をそれぞれ求める。

直線方程式垂直平行傾き
2025/5/8

2点A(4, 0, 5)とB(0, 2, 1)を通る直線上の点のうち、原点Oとの距離が最小となる点をPとする。 (1) 直線ABと直線OPの間に成り立つ関係を予想せよ。 (2) 点Pの座標を求めよ。ま...

ベクトル空間ベクトル直線距離内積
2025/5/8

与えられた2つの直線がそれぞれ平行、垂直のいずれであるかを判定する問題です。問題は4つあります。 (1) $y = 4x + 1$, $y = 4x - 3$ (2) $y = 3x - 1$, $x...

直線平行垂直傾き
2025/5/8

直方体OADB-CEGFにおいて、DG = GHとなるように点Hをとる。直線OHと平面ABCの交点をPとする。$\vec{OA}=\vec{a}$, $\vec{OB}=\vec{b}$, $\vec...

ベクトル空間ベクトル平面直方体内積
2025/5/8

直方体OADB-CGFにおいて、辺DGのGを越える延長上にDG = GHとなるように点Hをとる。直線OHと平面ABCの交点をPとする。ベクトル$OA = a, OB = b, OC = c$とするとき...

ベクトル空間ベクトル直方体平面の方程式線分の内分点
2025/5/8

$\triangle OAB$ において、辺 $OA$ を $3:2$ に内分する点を $C$、辺 $OB$ を $1:2$ に内分する点を $D$ とする。線分 $AD$ と線分 $BC$ の交点を...

ベクトル内分交点
2025/5/8