Simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometryTrigonometric IdentitiesSimplificationDouble Angle FormulaCotangent
2025/5/3

1. Problem Description

Simplify the expression sin(2α)cot(α)2\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}.

2. Solution Steps

We start with the given expression:
sin(2α)cot(α)2\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}
We can use the double angle formula for sine:
sin(2α)=2sin(α)cos(α)\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)
Substituting this into the expression, we get:
2sin(α)cos(α)cot(α)22\sin(\alpha)\cos(\alpha) \cdot \frac{\cot(\alpha)}{2}
We can simplify by canceling the 2 in the numerator and denominator:
sin(α)cos(α)cot(α)\sin(\alpha)\cos(\alpha) \cdot \cot(\alpha)
We also know that cot(α)=cos(α)sin(α)\cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}, so we can substitute this:
sin(α)cos(α)cos(α)sin(α)\sin(\alpha)\cos(\alpha) \cdot \frac{\cos(\alpha)}{\sin(\alpha)}
Now, we can cancel the sin(α)\sin(\alpha) terms:
cos(α)cos(α)\cos(\alpha) \cdot \cos(\alpha)
This simplifies to:
cos2(α)\cos^2(\alpha)

3. Final Answer

cos2(α)\cos^2(\alpha)

Related problems in "Trigonometry"

We are asked to calculate $\sin(x + \frac{\pi}{6})$ given that $\sin(x) = \frac{4}{5}$ and $\frac{\p...

TrigonometryAngle Sum FormulaSine FunctionUnit Circle
2025/5/3

We need to find the exact value of $\sin(\frac{3\pi}{4})$.

TrigonometrySine FunctionUnit CircleAngle CalculationReference Angle
2025/5/1

Determine the quadrant in which $\csc \theta > 0$ and $\sec \theta < 0$.

Trigonometric FunctionsQuadrantsSineCosineCosecantSecant
2025/5/1

We need to find the value of $sec(\frac{11\pi}{6})$.

TrigonometrySecant FunctionUnit CircleAngle ConversionReference Angle
2025/5/1

The problem asks us to analyze the graph of the function $y = \tan(\theta - \frac{\pi}{2})$. We are ...

Trigonometric FunctionsTangent FunctionGraphingPeriodAsymptotesTransformations
2025/4/30

We are given that $\sin 3y = \cos 2y$ and $0^{\circ} \le y \le 90^{\circ}$. We are asked to find the...

TrigonometryTrigonometric EquationsSineCosine
2025/4/29

We are given that $\tan x = 1$, where $0^\circ \le x \le 90^\circ$. We are asked to evaluate $\frac{...

TrigonometryTrigonometric IdentitiesTangent FunctionSine FunctionCosine FunctionAngle Evaluation
2025/4/29

Prove the following trigonometric identity: $\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \co...

Trigonometric IdentitiesTrigonometric EquationsProof
2025/4/29

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28