Prove the following trigonometric identity: $\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \cos\theta} = \tan\frac{\theta}{2}$

TrigonometryTrigonometric IdentitiesTrigonometric EquationsProof
2025/4/29

1. Problem Description

Prove the following trigonometric identity:
1+sinθcosθ1+sinθ+cosθ=tanθ2\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \cos\theta} = \tan\frac{\theta}{2}

2. Solution Steps

We will start with the left-hand side (LHS) of the equation and manipulate it to arrive at the right-hand side (RHS).
We will use the following trigonometric identities:
sinθ=2sinθ2cosθ2\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}
cosθ=cos2θ2sin2θ2\cos\theta = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}
1=cos2θ2+sin2θ21 = \cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}
Substituting these into the LHS:
LHS=1+sinθcosθ1+sinθ+cosθ=(cos2θ2+sin2θ2)+2sinθ2cosθ2(cos2θ2sin2θ2)(cos2θ2+sin2θ2)+2sinθ2cosθ2+(cos2θ2sin2θ2)LHS = \frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \cos\theta} = \frac{(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}) + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - (\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2})}{(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}) + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} + (\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2})}
LHS=cos2θ2+sin2θ2+2sinθ2cosθ2cos2θ2+sin2θ2cos2θ2+sin2θ2+2sinθ2cosθ2+cos2θ2sin2θ2LHS = \frac{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}}{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} + \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}}
LHS=2sin2θ2+2sinθ2cosθ22cos2θ2+2sinθ2cosθ2LHS = \frac{2\sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}
Factor out 2sinθ22\sin\frac{\theta}{2} from the numerator and 2cosθ22\cos\frac{\theta}{2} from the denominator:
LHS=2sinθ2(sinθ2+cosθ2)2cosθ2(cosθ2+sinθ2)LHS = \frac{2\sin\frac{\theta}{2}(\sin\frac{\theta}{2} + \cos\frac{\theta}{2})}{2\cos\frac{\theta}{2}(\cos\frac{\theta}{2} + \sin\frac{\theta}{2})}
LHS=sinθ2cosθ2LHS = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}
LHS=tanθ2LHS = \tan\frac{\theta}{2}
Therefore,
1+sinθcosθ1+sinθ+cosθ=tanθ2\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \cos\theta} = \tan\frac{\theta}{2}

3. Final Answer

tanθ2\tan\frac{\theta}{2}

Related problems in "Trigonometry"

We are given that $\sin 3y = \cos 2y$ and $0^{\circ} \le y \le 90^{\circ}$. We are asked to find the...

TrigonometryTrigonometric EquationsSineCosine
2025/4/29

We are given that $\tan x = 1$, where $0^\circ \le x \le 90^\circ$. We are asked to evaluate $\frac{...

TrigonometryTrigonometric IdentitiesTangent FunctionSine FunctionCosine FunctionAngle Evaluation
2025/4/29

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28

The image shows a set of trigonometry problems. I will solve problem number 15: $(cos\theta + cos\al...

TrigonometryTrigonometric IdentitiesCosine Angle Sum/DifferenceHalf-Angle Formula
2025/4/28

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26