We will start with the left-hand side (LHS) of the equation and manipulate it to arrive at the right-hand side (RHS).
We will use the following trigonometric identities:
sinθ=2sin2θcos2θ cosθ=cos22θ−sin22θ 1=cos22θ+sin22θ Substituting these into the LHS:
LHS=1+sinθ+cosθ1+sinθ−cosθ=(cos22θ+sin22θ)+2sin2θcos2θ+(cos22θ−sin22θ)(cos22θ+sin22θ)+2sin2θcos2θ−(cos22θ−sin22θ) LHS=cos22θ+sin22θ+2sin2θcos2θ+cos22θ−sin22θcos22θ+sin22θ+2sin2θcos2θ−cos22θ+sin22θ LHS=2cos22θ+2sin2θcos2θ2sin22θ+2sin2θcos2θ Factor out 2sin2θ from the numerator and 2cos2θ from the denominator: LHS=2cos2θ(cos2θ+sin2θ)2sin2θ(sin2θ+cos2θ) LHS=cos2θsin2θ LHS=tan2θ Therefore,
1+sinθ+cosθ1+sinθ−cosθ=tan2θ