We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find the value of $\sin(x + \frac{\pi}{6})$. The original problem likely intends $\alpha$ to be $x$, but in that case $\sin(x+\frac{\pi}{6})$ cannot be simplified to a single value, as $x$ is not uniquely determined. We will assume the problem intends to evaluate $\sin(\alpha + \frac{\pi}{6})$ instead.

TrigonometryTrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

1. Problem Description

We are given that sinα=45\sin{\alpha} = \frac{4}{5} and π2α<π\frac{\pi}{2} \le \alpha < \pi.
We need to find the value of sin(x+π6)\sin(x + \frac{\pi}{6}). The original problem likely intends α\alpha to be xx, but in that case sin(x+π6)\sin(x+\frac{\pi}{6}) cannot be simplified to a single value, as xx is not uniquely determined. We will assume the problem intends to evaluate sin(α+π6)\sin(\alpha + \frac{\pi}{6}) instead.

2. Solution Steps

First, since sinα=45\sin{\alpha} = \frac{4}{5} and π2α<π\frac{\pi}{2} \le \alpha < \pi, α\alpha lies in the second quadrant. We can find cosα\cos{\alpha} using the Pythagorean identity:
sin2α+cos2α=1\sin^2{\alpha} + \cos^2{\alpha} = 1
cos2α=1sin2α=1(45)2=11625=925\cos^2{\alpha} = 1 - \sin^2{\alpha} = 1 - (\frac{4}{5})^2 = 1 - \frac{16}{25} = \frac{9}{25}
Since α\alpha is in the second quadrant, cosα\cos{\alpha} is negative.
cosα=925=35\cos{\alpha} = -\sqrt{\frac{9}{25}} = -\frac{3}{5}.
Now we need to find sin(α+π6)\sin(\alpha + \frac{\pi}{6}). Using the sine addition formula, we have:
sin(a+b)=sinacosb+cosasinb\sin(a+b) = \sin{a}\cos{b} + \cos{a}\sin{b}
sin(α+π6)=sinαcosπ6+cosαsinπ6\sin(\alpha + \frac{\pi}{6}) = \sin{\alpha}\cos{\frac{\pi}{6}} + \cos{\alpha}\sin{\frac{\pi}{6}}
We know that sinα=45\sin{\alpha} = \frac{4}{5}, cosα=35\cos{\alpha} = -\frac{3}{5}, cosπ6=32\cos{\frac{\pi}{6}} = \frac{\sqrt{3}}{2}, and sinπ6=12\sin{\frac{\pi}{6}} = \frac{1}{2}.
Substituting these values into the formula, we get:
sin(α+π6)=(45)(32)+(35)(12)\sin(\alpha + \frac{\pi}{6}) = (\frac{4}{5})(\frac{\sqrt{3}}{2}) + (-\frac{3}{5})(\frac{1}{2})
sin(α+π6)=4310310=43310\sin(\alpha + \frac{\pi}{6}) = \frac{4\sqrt{3}}{10} - \frac{3}{10} = \frac{4\sqrt{3} - 3}{10}

3. Final Answer

sin(α+π6)=43310\sin(\alpha + \frac{\pi}{6}) = \frac{4\sqrt{3} - 3}{10}

Related problems in "Trigonometry"

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28

The image shows a set of trigonometry problems. I will solve problem number 15: $(cos\theta + cos\al...

TrigonometryTrigonometric IdentitiesCosine Angle Sum/DifferenceHalf-Angle Formula
2025/4/28

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

Solve the trigonometric equation: $\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\si...

Trigonometric EquationsTriple Angle FormulasTrigonometric IdentitiesSolution of Equations
2025/4/25

The problem requires us to prove the following trigonometric identity: $tan(x+y) - tan(x) - tan(y) =...

Trigonometric IdentitiesTangent Addition FormulaProof
2025/4/25