The problem requires us to prove the following trigonometric identity: $tan(x+y) - tan(x) - tan(y) = tan(x)tan(y)tan(x+y)$

TrigonometryTrigonometric IdentitiesTangent Addition FormulaProof
2025/4/25

1. Problem Description

The problem requires us to prove the following trigonometric identity:
tan(x+y)tan(x)tan(y)=tan(x)tan(y)tan(x+y)tan(x+y) - tan(x) - tan(y) = tan(x)tan(y)tan(x+y)

2. Solution Steps

We start with the tangent addition formula:
tan(x+y)=tan(x)+tan(y)1tan(x)tan(y)tan(x+y) = \frac{tan(x) + tan(y)}{1 - tan(x)tan(y)}
Multiply both sides by 1tan(x)tan(y)1 - tan(x)tan(y):
tan(x+y)(1tan(x)tan(y))=tan(x)+tan(y)tan(x+y)(1 - tan(x)tan(y)) = tan(x) + tan(y)
Expand the left side:
tan(x+y)tan(x+y)tan(x)tan(y)=tan(x)+tan(y)tan(x+y) - tan(x+y)tan(x)tan(y) = tan(x) + tan(y)
Rearrange the terms to isolate tan(x+y)tan(x)tan(y)tan(x+y) - tan(x) - tan(y) on the left-hand side:
tan(x+y)tan(x)tan(y)=tan(x+y)tan(x)tan(y)tan(x+y) - tan(x) - tan(y) = tan(x+y)tan(x)tan(y)
Thus, we have shown the identity.

3. Final Answer

tan(x+y)tan(x)tan(y)=tan(x)tan(y)tan(x+y)tan(x+y) - tan(x) - tan(y) = tan(x)tan(y)tan(x+y)

Related problems in "Trigonometry"

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

Solve the trigonometric equation: $\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\si...

Trigonometric EquationsTriple Angle FormulasTrigonometric IdentitiesSolution of Equations
2025/4/25

Prove the trigonometric identity: $2(\frac{1}{sin2x} + cot2x) = cot\frac{x}{2} - tan\frac{x}{2}$

Trigonometric IdentitiesProofSimplificationcotangenttangentsinecosine
2025/4/24

We are asked to simplify the expression: $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos ...

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasTangent FunctionEquation Solving
2025/4/22

We are asked to solve the trigonometric equation $\tan x + \cot x = 2(\sin 2x + \cos 2x)$.

Trigonometric EquationsTrigonometric IdentitiesSolution of Equations
2025/4/22