We are asked to simplify the expression: $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x}$ and then compare it to $\sqrt{3}$

TrigonometryTrigonometryTrigonometric IdentitiesSum-to-Product FormulasTangent FunctionEquation Solving
2025/4/22

1. Problem Description

We are asked to simplify the expression:
sinx+sin2x+sin3xcosx+cos2x+cos3x\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x}
and then compare it to 3\sqrt{3}

2. Solution Steps

We can rewrite the expression using sum-to-product formulas.
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin(\frac{A+B}{2}) \cos(\frac{A-B}{2})
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos(\frac{A+B}{2}) \cos(\frac{A-B}{2})
First, we group sinx\sin x and sin3x\sin 3x in the numerator:
sinx+sin3x=2sin(x+3x2)cos(x3x2)=2sin(2x)cos(x)=2sin(2x)cos(x)\sin x + \sin 3x = 2 \sin(\frac{x+3x}{2}) \cos(\frac{x-3x}{2}) = 2 \sin(2x) \cos(-x) = 2 \sin(2x) \cos(x)
(Since cos(x)=cos(x)\cos(-x) = \cos(x))
So, the numerator becomes:
sinx+sin2x+sin3x=2sin(2x)cosx+sin2x=sin2x(2cosx+1)\sin x + \sin 2x + \sin 3x = 2 \sin(2x) \cos x + \sin 2x = \sin 2x (2 \cos x + 1)
Similarly, we group cosx\cos x and cos3x\cos 3x in the denominator:
cosx+cos3x=2cos(x+3x2)cos(x3x2)=2cos(2x)cos(x)=2cos(2x)cos(x)\cos x + \cos 3x = 2 \cos(\frac{x+3x}{2}) \cos(\frac{x-3x}{2}) = 2 \cos(2x) \cos(-x) = 2 \cos(2x) \cos(x)
So, the denominator becomes:
cosx+cos2x+cos3x=2cos(2x)cosx+cos2x=cos2x(2cosx+1)\cos x + \cos 2x + \cos 3x = 2 \cos(2x) \cos x + \cos 2x = \cos 2x (2 \cos x + 1)
Therefore, the expression becomes:
sinx+sin2x+sin3xcosx+cos2x+cos3x=sin2x(2cosx+1)cos2x(2cosx+1)\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \frac{\sin 2x (2 \cos x + 1)}{\cos 2x (2 \cos x + 1)}
If 2cosx+102 \cos x + 1 \ne 0, we can cancel the common factor:
sin2x(2cosx+1)cos2x(2cosx+1)=sin2xcos2x=tan2x\frac{\sin 2x (2 \cos x + 1)}{\cos 2x (2 \cos x + 1)} = \frac{\sin 2x}{\cos 2x} = \tan 2x
We are given that tan2x=3\tan 2x = \sqrt{3}.
The general solution for tanθ=3\tan \theta = \sqrt{3} is θ=nπ+π3\theta = n\pi + \frac{\pi}{3}, where nn is an integer.
Therefore, 2x=nπ+π32x = n\pi + \frac{\pi}{3}, so x=nπ2+π6x = \frac{n\pi}{2} + \frac{\pi}{6}, where nn is an integer.

3. Final Answer

tan2x=3\tan 2x = \sqrt{3}
x=nπ2+π6x = \frac{n\pi}{2} + \frac{\pi}{6}, where n is an integer.

Related problems in "Trigonometry"

We are asked to solve the trigonometric equation $\tan x + \cot x = 2(\sin 2x + \cos 2x)$.

Trigonometric EquationsTrigonometric IdentitiesSolution of Equations
2025/4/22

The problem asks to solve for $x$ in the equation $\sin(5 \times 21^{\circ}) = \cos(9^{\circ}) + \ta...

Trigonometric EquationsTrigonometric IdentitiesSineCosineTangentAngle Sum and Difference Identities
2025/4/21

The problem is to simplify the expression $\tan(x) \cot(9^\circ) + \tan(5x)$. I assume the question...

Trigonometric IdentitiesTangent FunctionCotangent FunctionSimplification
2025/4/21

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14