We can rewrite the expression using sum-to-product formulas.
sinA+sinB=2sin(2A+B)cos(2A−B) cosA+cosB=2cos(2A+B)cos(2A−B) First, we group sinx and sin3x in the numerator: sinx+sin3x=2sin(2x+3x)cos(2x−3x)=2sin(2x)cos(−x)=2sin(2x)cos(x) (Since cos(−x)=cos(x)) So, the numerator becomes:
sinx+sin2x+sin3x=2sin(2x)cosx+sin2x=sin2x(2cosx+1) Similarly, we group cosx and cos3x in the denominator: cosx+cos3x=2cos(2x+3x)cos(2x−3x)=2cos(2x)cos(−x)=2cos(2x)cos(x) So, the denominator becomes:
cosx+cos2x+cos3x=2cos(2x)cosx+cos2x=cos2x(2cosx+1) Therefore, the expression becomes:
cosx+cos2x+cos3xsinx+sin2x+sin3x=cos2x(2cosx+1)sin2x(2cosx+1) If 2cosx+1=0, we can cancel the common factor: cos2x(2cosx+1)sin2x(2cosx+1)=cos2xsin2x=tan2x We are given that tan2x=3. The general solution for tanθ=3 is θ=nπ+3π, where n is an integer. Therefore, 2x=nπ+3π, so x=2nπ+6π, where n is an integer.