1−cosx−sinx1+cosx−sinx Multiply both numerator and denominator by 1+cosx+sinx: (1−cosx−sinx)(1+cosx+sinx)(1+cosx−sinx)(1+cosx+sinx) (1+sinx)2−cos2x(1+cosx)2−sin2x 1+2sinx+sin2x−cos2x1+2cosx+cos2x−sin2x 1+2sinx+sin2x−(1−sin2x)1+2cosx+cos2x−(1−cos2x) 2sinx+2sin2x2cosx+2cos2x 2sinx(1+sinx)2cosx(1+cosx) sinx(1+sinx)cosx(1+cosx) Multiply both numerator and denominator by 1−sinx: sinx(1+sinx)(1−sinx)cosx(1+cosx)(1−sinx) However, this approach appears to be more complicated. Instead, use the half-angle formulas:
cosx=2cos22x−1=1−2sin22x sinx=2sin2xcos2x Substituting these into LHS:
1−(1−2sin22x)−2sin2xcos2x1+1−2sin22x−2sin2xcos2x 2sin22x−2sin2xcos2x2−2sin22x−2sin2xcos2x 2(sin22x−sin2xcos2x)2(1−sin22x−sin2xcos2x) sin22x−sin2xcos2xcos22x−sin2xcos2x sin2x(sin2x−cos2x)cos2x(cos2x−sin2x) sin2x(−(cos2x−sin2x))cos2x(cos2x−sin2x) −sin2xcos2x This is the RHS. Therefore, the second identity is proven.