Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\sin^5(x) - 20\sin^3(x) + 5\sin(x)$. Then, we need to solve the equation $\sin(5x) = 0$ for $x \in \mathbb{R}$ and verify that $\frac{\pi}{5}$ and $\frac{2\pi}{5}$ are solutions. Next, we must solve the equation $16X^5 - 20X^3 + 5X = 0$ for $X \in \mathbb{R}$. Finally, we have to deduce the values of $\sin(\frac{\pi}{5})$ and $\sin(\frac{2\pi}{5})$ from the previous questions.

TrigonometryTrigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14

1. Problem Description

Exercise 22 is asking us to solve a series of problems. First, we need to show that sin(5x)=16sin5(x)20sin3(x)+5sin(x)\sin(5x) = 16\sin^5(x) - 20\sin^3(x) + 5\sin(x). Then, we need to solve the equation sin(5x)=0\sin(5x) = 0 for xRx \in \mathbb{R} and verify that π5\frac{\pi}{5} and 2π5\frac{2\pi}{5} are solutions. Next, we must solve the equation 16X520X3+5X=016X^5 - 20X^3 + 5X = 0 for XRX \in \mathbb{R}. Finally, we have to deduce the values of sin(π5)\sin(\frac{\pi}{5}) and sin(2π5)\sin(\frac{2\pi}{5}) from the previous questions.

2. Solution Steps

1. Showing the identity $\sin(5x) = 16\sin^5(x) - 20\sin^3(x) + 5\sin(x)$.

We know that sin(5x)=sin(4x+x)\sin(5x) = \sin(4x+x). Using the sine addition formula:
sin(5x)=sin(4x)cos(x)+cos(4x)sin(x)\sin(5x) = \sin(4x)\cos(x) + \cos(4x)\sin(x).
We also know that
sin(4x)=2sin(2x)cos(2x)=2(2sin(x)cos(x))(cos2(x)sin2(x))=4sin(x)cos(x)(cos2(x)sin2(x))\sin(4x) = 2\sin(2x)\cos(2x) = 2(2\sin(x)\cos(x))(\cos^2(x) - \sin^2(x)) = 4\sin(x)\cos(x)(\cos^2(x) - \sin^2(x)).
cos(4x)=cos2(2x)sin2(2x)=(cos2(x)sin2(x))2(2sin(x)cos(x))2=cos4(x)2sin2(x)cos2(x)+sin4(x)4sin2(x)cos2(x)=cos4(x)6sin2(x)cos2(x)+sin4(x)\cos(4x) = \cos^2(2x) - \sin^2(2x) = (\cos^2(x) - \sin^2(x))^2 - (2\sin(x)\cos(x))^2 = \cos^4(x) - 2\sin^2(x)\cos^2(x) + \sin^4(x) - 4\sin^2(x)\cos^2(x) = \cos^4(x) - 6\sin^2(x)\cos^2(x) + \sin^4(x).
So,
sin(5x)=4sin(x)cos2(x)(cos2(x)sin2(x))+(cos4(x)6sin2(x)cos2(x)+sin4(x))sin(x)\sin(5x) = 4\sin(x)\cos^2(x)(\cos^2(x) - \sin^2(x)) + (\cos^4(x) - 6\sin^2(x)\cos^2(x) + \sin^4(x))\sin(x)
sin(5x)=4sin(x)cos4(x)4sin3(x)cos2(x)+sin(x)cos4(x)6sin3(x)cos2(x)+sin5(x)\sin(5x) = 4\sin(x)\cos^4(x) - 4\sin^3(x)\cos^2(x) + \sin(x)\cos^4(x) - 6\sin^3(x)\cos^2(x) + \sin^5(x)
sin(5x)=5sin(x)cos4(x)10sin3(x)cos2(x)+sin5(x)\sin(5x) = 5\sin(x)\cos^4(x) - 10\sin^3(x)\cos^2(x) + \sin^5(x)
Since cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x):
sin(5x)=5sin(x)(1sin2(x))210sin3(x)(1sin2(x))+sin5(x)\sin(5x) = 5\sin(x)(1 - \sin^2(x))^2 - 10\sin^3(x)(1 - \sin^2(x)) + \sin^5(x)
sin(5x)=5sin(x)(12sin2(x)+sin4(x))10sin3(x)+10sin5(x)+sin5(x)\sin(5x) = 5\sin(x)(1 - 2\sin^2(x) + \sin^4(x)) - 10\sin^3(x) + 10\sin^5(x) + \sin^5(x)
sin(5x)=5sin(x)10sin3(x)+5sin5(x)10sin3(x)+10sin5(x)+sin5(x)\sin(5x) = 5\sin(x) - 10\sin^3(x) + 5\sin^5(x) - 10\sin^3(x) + 10\sin^5(x) + \sin^5(x)
sin(5x)=16sin5(x)20sin3(x)+5sin(x)\sin(5x) = 16\sin^5(x) - 20\sin^3(x) + 5\sin(x).

2. Solving $\sin(5x) = 0$.

sin(5x)=0\sin(5x) = 0 implies 5x=kπ5x = k\pi for kZk \in \mathbb{Z}. Therefore, x=kπ5x = \frac{k\pi}{5} for kZk \in \mathbb{Z}.
For x=π5x = \frac{\pi}{5}, sin(5x)=sin(π)=0\sin(5x) = \sin(\pi) = 0.
For x=2π5x = \frac{2\pi}{5}, sin(5x)=sin(2π)=0\sin(5x) = \sin(2\pi) = 0.
So π5\frac{\pi}{5} and 2π5\frac{2\pi}{5} are solutions to sin(5x)=0\sin(5x) = 0.

3. Solving $16X^5 - 20X^3 + 5X = 0$.

We can factor out XX to get:
X(16X420X2+5)=0X(16X^4 - 20X^2 + 5) = 0.
Therefore, X=0X = 0 is one solution.
Let X=sin(x)X = \sin(x). From part 1, we have 16sin5(x)20sin3(x)+5sin(x)=sin(5x)16\sin^5(x) - 20\sin^3(x) + 5\sin(x) = \sin(5x).
So, 16X420X2+5=016X^4 - 20X^2 + 5 = 0 can be rewritten as 16sin4(x)20sin2(x)+5=016\sin^4(x) - 20\sin^2(x) + 5 = 0.
However, since 16X520X3+5X=X(16X420X2+5)=016X^5 - 20X^3 + 5X = X(16X^4 - 20X^2 + 5) = 0, and sin(5x)=16sin5(x)20sin3(x)+5sin(x)\sin(5x) = 16\sin^5(x) - 20\sin^3(x) + 5\sin(x),
the roots of 16X520X3+5X=016X^5 - 20X^3 + 5X = 0 correspond to solutions of sin(5x)=0\sin(5x) = 0.
Thus, X=sin(x)X = \sin(x) where x=kπ5x = \frac{k\pi}{5} for kZk \in \mathbb{Z}.
The solutions for XX are X=sin(0)=0X = \sin(0) = 0, X=sin(π5)X = \sin(\frac{\pi}{5}), X=sin(2π5)X = \sin(\frac{2\pi}{5}), X=sin(3π5)=sin(2π5)X = \sin(\frac{3\pi}{5}) = \sin(\frac{2\pi}{5}), X=sin(4π5)=sin(π5)X = \sin(\frac{4\pi}{5}) = \sin(\frac{\pi}{5}), X=sin(π)=0X = \sin(\pi) = 0.
The distinct solutions are 0,sin(π5),sin(2π5)0, \sin(\frac{\pi}{5}), \sin(\frac{2\pi}{5}).
Therefore the solutions to 16X520X3+5X=016X^5 - 20X^3 + 5X = 0 are X=0,sin(π5),sin(2π5),sin(π5),sin(2π5)X = 0, \sin(\frac{\pi}{5}), \sin(\frac{2\pi}{5}), -\sin(\frac{\pi}{5}), -\sin(\frac{2\pi}{5}).

4. Deducing the values of $\sin(\frac{\pi}{5})$ and $\sin(\frac{2\pi}{5})$.

Let X=sin(π5)X = \sin(\frac{\pi}{5}). Then X0X \ne 0. Since sin(5x)=0\sin(5x) = 0, then 16sin5(x)20sin3(x)+5sin(x)=016\sin^5(x) - 20\sin^3(x) + 5\sin(x) = 0, so 16X420X2+5=016X^4 - 20X^2 + 5 = 0.
Let Y=X2Y = X^2. Then 16Y220Y+5=016Y^2 - 20Y + 5 = 0.
Using the quadratic formula:
Y=20±2024(16)(5)2(16)=20±40032032=20±8032=20±4532=5±58Y = \frac{20 \pm \sqrt{20^2 - 4(16)(5)}}{2(16)} = \frac{20 \pm \sqrt{400 - 320}}{32} = \frac{20 \pm \sqrt{80}}{32} = \frac{20 \pm 4\sqrt{5}}{32} = \frac{5 \pm \sqrt{5}}{8}.
Since X=sin(π5)>0X = \sin(\frac{\pi}{5}) > 0 and sin2(x)=Y\sin^2(x) = Y, X=YX = \sqrt{Y}.
We know that sin(π5)<sin(π2)=1\sin(\frac{\pi}{5}) < \sin(\frac{\pi}{2}) = 1. Also, sin(2π5)>0\sin(\frac{2\pi}{5}) > 0.
Therefore, sin(π5)=558\sin(\frac{\pi}{5}) = \sqrt{\frac{5 - \sqrt{5}}{8}} and sin(2π5)=5+58\sin(\frac{2\pi}{5}) = \sqrt{\frac{5 + \sqrt{5}}{8}}.

3. Final Answer

sin(π5)=558\sin(\frac{\pi}{5}) = \sqrt{\frac{5 - \sqrt{5}}{8}}
sin(2π5)=5+58\sin(\frac{2\pi}{5}) = \sqrt{\frac{5 + \sqrt{5}}{8}}

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\f...

Trigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14