The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\frac{\pi}{12})\sin(\frac{5\pi}{12})$ and $B = \cos(\frac{5\pi}{12})\cos(\frac{\pi}{12}) - \sin(\frac{5\pi}{12})\sin(\frac{\pi}{12})$. Then, we are asked to deduce that $\sin(\frac{\pi}{12})\sin(\frac{5\pi}{12}) = \frac{1}{4}$.

TrigonometryTrigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14

1. Problem Description

The problem asks us to compute the value of A=cos(π12)cos(5π12)+sin(π12)sin(5π12)A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\frac{\pi}{12})\sin(\frac{5\pi}{12}) and B=cos(5π12)cos(π12)sin(5π12)sin(π12)B = \cos(\frac{5\pi}{12})\cos(\frac{\pi}{12}) - \sin(\frac{5\pi}{12})\sin(\frac{\pi}{12}). Then, we are asked to deduce that sin(π12)sin(5π12)=14\sin(\frac{\pi}{12})\sin(\frac{5\pi}{12}) = \frac{1}{4}.

2. Solution Steps

First, we calculate A:
Using the trigonometric identity cos(ab)=cos(a)cos(b)+sin(a)sin(b)\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b), we have:
A=cos(π12)cos(5π12)+sin(π12)sin(5π12)=cos(5π12π12)=cos(4π12)=cos(π3)=12A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\frac{\pi}{12})\sin(\frac{5\pi}{12}) = \cos(\frac{5\pi}{12} - \frac{\pi}{12}) = \cos(\frac{4\pi}{12}) = \cos(\frac{\pi}{3}) = \frac{1}{2}.
Next, we calculate B:
Using the trigonometric identity cos(a+b)=cos(a)cos(b)sin(a)sin(b)\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), we have:
B=cos(5π12)cos(π12)sin(5π12)sin(π12)=cos(5π12+π12)=cos(6π12)=cos(π2)=0B = \cos(\frac{5\pi}{12})\cos(\frac{\pi}{12}) - \sin(\frac{5\pi}{12})\sin(\frac{\pi}{12}) = \cos(\frac{5\pi}{12} + \frac{\pi}{12}) = \cos(\frac{6\pi}{12}) = \cos(\frac{\pi}{2}) = 0.
We are given that cos(π12)cos(5π12)=14\cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) = \frac{1}{4}.
From the calculation of BB, we have
cos(5π12)cos(π12)sin(5π12)sin(π12)=0\cos(\frac{5\pi}{12})\cos(\frac{\pi}{12}) - \sin(\frac{5\pi}{12})\sin(\frac{\pi}{12}) = 0
cos(5π12)cos(π12)=sin(5π12)sin(π12)\cos(\frac{5\pi}{12})\cos(\frac{\pi}{12}) = \sin(\frac{5\pi}{12})\sin(\frac{\pi}{12})
sin(5π12)sin(π12)=14\sin(\frac{5\pi}{12})\sin(\frac{\pi}{12}) = \frac{1}{4}.

3. Final Answer

sin(π12)sin(5π12)=14\sin(\frac{\pi}{12})\sin(\frac{5\pi}{12}) = \frac{1}{4}

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14