We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$. We are also asked to justify some trigonometric identities and use them to solve a polynomial equation, and finally, deduce the value of $\sin(\frac{\pi}{10})$.

TrigonometryTrigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

1. Problem Description

We are given the equation cos(4x)=sin(x)\cos(4x) = \sin(x) and we need to solve it in the interval [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. We are also asked to justify some trigonometric identities and use them to solve a polynomial equation, and finally, deduce the value of sin(π10)\sin(\frac{\pi}{10}).

2. Solution Steps

1. Solve $\cos(4x) = \sin(x)$ in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We know that sin(x)=cos(π2x)\sin(x) = \cos(\frac{\pi}{2} - x). So, we can rewrite the equation as:
cos(4x)=cos(π2x)\cos(4x) = \cos(\frac{\pi}{2} - x).
This means that 4x=π2x+2kπ4x = \frac{\pi}{2} - x + 2k\pi or 4x=(π2x)+2kπ4x = -(\frac{\pi}{2} - x) + 2k\pi, where kk is an integer.
Case 1: 4x=π2x+2kπ4x = \frac{\pi}{2} - x + 2k\pi
5x=π2+2kπ5x = \frac{\pi}{2} + 2k\pi
x=π10+2kπ5x = \frac{\pi}{10} + \frac{2k\pi}{5}
When k=1k = -1, x=π102π5=π104π10=3π10x = \frac{\pi}{10} - \frac{2\pi}{5} = \frac{\pi}{10} - \frac{4\pi}{10} = -\frac{3\pi}{10}.
When k=0k = 0, x=π10x = \frac{\pi}{10}.
When k=1k = 1, x=π10+2π5=π10+4π10=5π10=π2x = \frac{\pi}{10} + \frac{2\pi}{5} = \frac{\pi}{10} + \frac{4\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}.
Case 2: 4x=(π2x)+2kπ4x = -(\frac{\pi}{2} - x) + 2k\pi
4x=π2+x+2kπ4x = -\frac{\pi}{2} + x + 2k\pi
3x=π2+2kπ3x = -\frac{\pi}{2} + 2k\pi
x=π6+2kπ3x = -\frac{\pi}{6} + \frac{2k\pi}{3}
When k=0k = 0, x=π6x = -\frac{\pi}{6}.
When k=1k = 1, x=π6+2π3=π6+4π6=3π6=π2x = -\frac{\pi}{6} + \frac{2\pi}{3} = -\frac{\pi}{6} + \frac{4\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}.
When k=1k = -1, x=π62π3=π64π6=5π6x = -\frac{\pi}{6} - \frac{2\pi}{3} = -\frac{\pi}{6} - \frac{4\pi}{6} = -\frac{5\pi}{6} (not in the interval).
Therefore, the solutions are x=3π10,π6,π10,π2x = -\frac{3\pi}{10}, -\frac{\pi}{6}, \frac{\pi}{10}, \frac{\pi}{2}.

2. Represent the solutions on the trigonometric circle. (Skipped)

3. Justify the equalities:

a) cos(4x)=12sin2(2x)\cos(4x) = 1 - 2\sin^2(2x).
We know that cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta). Let θ=2x\theta = 2x, then cos(4x)=12sin2(2x)\cos(4x) = 1 - 2\sin^2(2x).
b) cos(4x)=8sin4(x)8sin2(x)+1\cos(4x) = 8\sin^4(x) - 8\sin^2(x) + 1.
We know that cos(4x)=12sin2(2x)\cos(4x) = 1 - 2\sin^2(2x). We also know that sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x).
So, cos(4x)=12(2sin(x)cos(x))2=12(4sin2(x)cos2(x))=18sin2(x)cos2(x)\cos(4x) = 1 - 2(2\sin(x)\cos(x))^2 = 1 - 2(4\sin^2(x)\cos^2(x)) = 1 - 8\sin^2(x)\cos^2(x).
Since cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x), we have
cos(4x)=18sin2(x)(1sin2(x))=18sin2(x)+8sin4(x)\cos(4x) = 1 - 8\sin^2(x)(1 - \sin^2(x)) = 1 - 8\sin^2(x) + 8\sin^4(x).
Thus, cos(4x)=8sin4(x)8sin2(x)+1\cos(4x) = 8\sin^4(x) - 8\sin^2(x) + 1.

4. Deduce that if $x = \sin(x)$, then $8X^4 - 8X^2 - X + 1 = 0$.

If cos(4x)=sin(x)\cos(4x) = \sin(x) and X=sin(x)X = \sin(x), then cos(4x)=8sin4(x)8sin2(x)+1\cos(4x) = 8\sin^4(x) - 8\sin^2(x) + 1 becomes X=8X48X2+1X = 8X^4 - 8X^2 + 1. So, 8X48X2X+1=08X^4 - 8X^2 - X + 1 = 0.

5. Show that $1/2$ is a solution of $8X^4 - 8X^2 - X + 1 = 0$.

If X=1/2X=1/2, 8(1/2)48(1/2)2(1/2)+1=8(1/16)8(1/4)1/2+1=1/221/2+1=108(1/2)^4 - 8(1/2)^2 - (1/2) + 1 = 8(1/16) - 8(1/4) - 1/2 + 1 = 1/2 - 2 - 1/2 + 1 = -1 \ne 0. So 1/21/2 is NOT a solution.
Show that 11 is a solution of 8X48X2X+1=08X^4 - 8X^2 - X + 1 = 0.
If X=1X=1, 8(1)48(1)2(1)+1=881+1=08(1)^4 - 8(1)^2 - (1) + 1 = 8 - 8 - 1 + 1 = 0. So, 11 is a solution.
Given 8X48X2X+1=(X1)(2X+1)(aX2+bX+c)8X^4 - 8X^2 - X + 1 = (X-1)(2X+1)(aX^2 + bX + c). Expanding the right side gives:
(X1)(2X+1)(aX2+bX+c)=(2X2X1)(aX2+bX+c)=2aX4+(2ba)X3+(2cba)X2+(cb)Xc(X-1)(2X+1)(aX^2 + bX + c) = (2X^2 - X - 1)(aX^2 + bX + c) = 2aX^4 + (2b-a)X^3 + (2c-b-a)X^2 + (-c-b)X - c.
Comparing coefficients with 8X48X2X+18X^4 - 8X^2 - X + 1, we get:
2a=8    a=42a = 8 \implies a = 4
2ba=0    2b=4    b=22b - a = 0 \implies 2b = 4 \implies b = 2
2cba=8    2c24=8    2c=2    c=12c - b - a = -8 \implies 2c - 2 - 4 = -8 \implies 2c = -2 \implies c = -1
cb=1    (1)2=1    1=1-c - b = -1 \implies -(-1) - 2 = -1 \implies -1 = -1
c=1    (1)=1    1=1-c = 1 \implies -(-1) = 1 \implies 1 = 1
So, 8X48X2X+1=(X1)(2X+1)(4X2+2X1)8X^4 - 8X^2 - X + 1 = (X-1)(2X+1)(4X^2 + 2X - 1).
The roots are X=1,X=1/2X=1, X = -1/2. Also 4X2+2X1=04X^2 + 2X - 1 = 0.
X=2±44(4)(1)8=2±208=2±258=1±54X = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8} = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4}
Since we want sin(π10)\sin(\frac{\pi}{10}), it has to be positive. So, X=1+54X = \frac{-1 + \sqrt{5}}{4}.
Then sin(π10)=514\sin(\frac{\pi}{10}) = \frac{\sqrt{5}-1}{4}.

3. Final Answer

The solutions to cos(4x)=sin(x)\cos(4x) = \sin(x) in the interval [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}] are x=3π10,π6,π10,π2x = -\frac{3\pi}{10}, -\frac{\pi}{6}, \frac{\pi}{10}, \frac{\pi}{2}.
sin(π10)=514\sin(\frac{\pi}{10}) = \frac{\sqrt{5}-1}{4}

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14

The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\f...

Trigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14