We are asked to solve the following trigonometric equations in $R$ and represent the solutions on the unit circle: a) $3\cos x - \sqrt{3}\sin x + \sqrt{6} = 0$ b) $\cos 2x - \sin 2x = -1$ c) $\cos^2(2x-\frac{\pi}{3}) - \cos^2(x+\frac{\pi}{4}) = 0$ d) $\sin 2x - 2\sin x \cos(x+\frac{\pi}{3}) = 0$

TrigonometryTrigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

1. Problem Description

We are asked to solve the following trigonometric equations in RR and represent the solutions on the unit circle:
a) 3cosx3sinx+6=03\cos x - \sqrt{3}\sin x + \sqrt{6} = 0
b) cos2xsin2x=1\cos 2x - \sin 2x = -1
c) cos2(2xπ3)cos2(x+π4)=0\cos^2(2x-\frac{\pi}{3}) - \cos^2(x+\frac{\pi}{4}) = 0
d) sin2x2sinxcos(x+π3)=0\sin 2x - 2\sin x \cos(x+\frac{\pi}{3}) = 0

2. Solution Steps

a) 3cosx3sinx+6=03\cos x - \sqrt{3}\sin x + \sqrt{6} = 0
3cosx3sinx=63\cos x - \sqrt{3}\sin x = -\sqrt{6}
Divide by 32+(3)2=9+3=12=23\sqrt{3^2 + (-\sqrt{3})^2} = \sqrt{9+3} = \sqrt{12} = 2\sqrt{3}:
323cosx323sinx=623\frac{3}{2\sqrt{3}}\cos x - \frac{\sqrt{3}}{2\sqrt{3}}\sin x = -\frac{\sqrt{6}}{2\sqrt{3}}
32cosx12sinx=22\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = -\frac{\sqrt{2}}{2}
cos(π6)cosxsin(π6)sinx=22\cos(\frac{\pi}{6})\cos x - \sin(\frac{\pi}{6})\sin x = -\frac{\sqrt{2}}{2}
cos(x+π6)=22\cos(x + \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}
x+π6=3π4+2kπx + \frac{\pi}{6} = \frac{3\pi}{4} + 2k\pi or x+π6=3π4+2π+2kπ=5π4+2kπx + \frac{\pi}{6} = -\frac{3\pi}{4} + 2\pi + 2k\pi = \frac{5\pi}{4} + 2k\pi, kZk \in Z
x=3π4π6+2kπ=9π2π12+2kπ=7π12+2kπx = \frac{3\pi}{4} - \frac{\pi}{6} + 2k\pi = \frac{9\pi - 2\pi}{12} + 2k\pi = \frac{7\pi}{12} + 2k\pi
or
x=5π4π6+2kπ=15π2π12+2kπ=13π12+2kπx = \frac{5\pi}{4} - \frac{\pi}{6} + 2k\pi = \frac{15\pi - 2\pi}{12} + 2k\pi = \frac{13\pi}{12} + 2k\pi
b) cos2xsin2x=1\cos 2x - \sin 2x = -1
cos2xsin2x=1\cos 2x - \sin 2x = -1
Divide by 12+(1)2=2\sqrt{1^2 + (-1)^2} = \sqrt{2}
12cos2x12sin2x=12\frac{1}{\sqrt{2}}\cos 2x - \frac{1}{\sqrt{2}}\sin 2x = -\frac{1}{\sqrt{2}}
cos(π4)cos2xsin(π4)sin2x=22\cos(\frac{\pi}{4})\cos 2x - \sin(\frac{\pi}{4})\sin 2x = -\frac{\sqrt{2}}{2}
cos(2x+π4)=22\cos(2x + \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}
2x+π4=3π4+2kπ2x + \frac{\pi}{4} = \frac{3\pi}{4} + 2k\pi or 2x+π4=5π4+2kπ2x + \frac{\pi}{4} = \frac{5\pi}{4} + 2k\pi, kZk \in Z
2x=3π4π4+2kπ=2π4+2kπ=π2+2kπ2x = \frac{3\pi}{4} - \frac{\pi}{4} + 2k\pi = \frac{2\pi}{4} + 2k\pi = \frac{\pi}{2} + 2k\pi
x=π4+kπx = \frac{\pi}{4} + k\pi
or
2x=5π4π4+2kπ=4π4+2kπ=π+2kπ2x = \frac{5\pi}{4} - \frac{\pi}{4} + 2k\pi = \frac{4\pi}{4} + 2k\pi = \pi + 2k\pi
x=π2+kπx = \frac{\pi}{2} + k\pi
c) cos2(2xπ3)cos2(x+π4)=0\cos^2(2x-\frac{\pi}{3}) - \cos^2(x+\frac{\pi}{4}) = 0
Using a2b2=(ab)(a+b)a^2-b^2=(a-b)(a+b):
(cos(2xπ3)cos(x+π4))(cos(2xπ3)+cos(x+π4))=0(\cos(2x-\frac{\pi}{3}) - \cos(x+\frac{\pi}{4}))(\cos(2x-\frac{\pi}{3}) + \cos(x+\frac{\pi}{4})) = 0
Using the cosine sum-to-product formulas:
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin(\frac{A+B}{2}) \sin(\frac{A-B}{2})
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos(\frac{A+B}{2}) \cos(\frac{A-B}{2})
4sin(2xπ3+x+π42)sin(2xπ3xπ42)cos(2xπ3+x+π42)cos(2xπ3xπ42)=0-4\sin(\frac{2x-\frac{\pi}{3}+x+\frac{\pi}{4}}{2}) \sin(\frac{2x-\frac{\pi}{3}-x-\frac{\pi}{4}}{2}) \cos(\frac{2x-\frac{\pi}{3}+x+\frac{\pi}{4}}{2}) \cos(\frac{2x-\frac{\pi}{3}-x-\frac{\pi}{4}}{2}) = 0
4sin(3xπ122)sin(x7π122)cos(3xπ122)cos(x7π122)=0-4\sin(\frac{3x-\frac{\pi}{12}}{2}) \sin(\frac{x-\frac{7\pi}{12}}{2}) \cos(\frac{3x-\frac{\pi}{12}}{2}) \cos(\frac{x-\frac{7\pi}{12}}{2}) = 0
sin(3xπ12)sin(x7π12)=0- \sin(3x-\frac{\pi}{12}) \sin(x-\frac{7\pi}{12}) = 0
sin(3xπ12)=0\sin(3x-\frac{\pi}{12}) = 0 or sin(x7π12)=0\sin(x-\frac{7\pi}{12}) = 0
3xπ12=kπ3x-\frac{\pi}{12} = k\pi or x7π12=kπx-\frac{7\pi}{12} = k\pi, kZk \in Z
3x=kπ+π123x = k\pi + \frac{\pi}{12} or x=kπ+7π12x = k\pi + \frac{7\pi}{12}
x=kπ3+π36x = \frac{k\pi}{3} + \frac{\pi}{36} or x=kπ+7π12x = k\pi + \frac{7\pi}{12}
d) sin2x2sinxcos(x+π3)=0\sin 2x - 2\sin x \cos(x+\frac{\pi}{3}) = 0
2sinxcosx2sinxcos(x+π3)=02\sin x \cos x - 2\sin x \cos(x+\frac{\pi}{3}) = 0
2sinx(cosxcos(x+π3))=02\sin x (\cos x - \cos(x+\frac{\pi}{3})) = 0
sinx=0\sin x = 0 or cosx=cos(x+π3)\cos x = \cos(x+\frac{\pi}{3})
x=kπx = k\pi or x=x+π3+2kπx = x + \frac{\pi}{3} + 2k\pi or x=(x+π3)+2kπx = -(x+\frac{\pi}{3}) + 2k\pi
sinx=0\sin x = 0
x=kπx = k\pi
cosx=cos(x+π3)\cos x = \cos(x+\frac{\pi}{3}) has no solutions.
x=xπ3+2kπx = -x - \frac{\pi}{3} + 2k\pi
2x=π3+2kπ2x = -\frac{\pi}{3} + 2k\pi
x=π6+kπx = -\frac{\pi}{6} + k\pi
So, x=kπx = k\pi or x=π6+kπx = -\frac{\pi}{6} + k\pi

3. Final Answer

a) x=7π12+2kπx = \frac{7\pi}{12} + 2k\pi or x=13π12+2kπx = \frac{13\pi}{12} + 2k\pi, kZk \in Z
b) x=π4+kπx = \frac{\pi}{4} + k\pi or x=π2+kπx = \frac{\pi}{2} + k\pi, kZk \in Z
c) x=kπ3+π36x = \frac{k\pi}{3} + \frac{\pi}{36} or x=kπ+7π12x = k\pi + \frac{7\pi}{12}, kZk \in Z
d) x=kπx = k\pi or x=π6+kπx = -\frac{\pi}{6} + k\pi, kZk \in Z

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14

The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\f...

Trigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14