a) 3 cos x − 3 sin x + 6 = 0 3\cos x - \sqrt{3}\sin x + \sqrt{6} = 0 3 cos x − 3 sin x + 6 = 0 We can rewrite the equation as:
3 sin x − 3 cos x = 6 \sqrt{3}\sin x - 3\cos x = \sqrt{6} 3 sin x − 3 cos x = 6 Divide by ( 3 ) 2 + ( − 3 ) 2 = 3 + 9 = 12 = 2 3 \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3} ( 3 ) 2 + ( − 3 ) 2 = 3 + 9 = 12 = 2 3 : 3 2 3 sin x − 3 2 3 cos x = 6 2 3 \frac{\sqrt{3}}{2\sqrt{3}}\sin x - \frac{3}{2\sqrt{3}}\cos x = \frac{\sqrt{6}}{2\sqrt{3}} 2 3 3 sin x − 2 3 3 cos x = 2 3 6 1 2 sin x − 3 2 cos x = 2 2 \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{\sqrt{2}}{2} 2 1 sin x − 2 3 cos x = 2 2 cos ( π 3 ) sin x − sin ( π 3 ) cos x = 2 2 \cos(\frac{\pi}{3})\sin x - \sin(\frac{\pi}{3})\cos x = \frac{\sqrt{2}}{2} cos ( 3 π ) sin x − sin ( 3 π ) cos x = 2 2 sin ( x − π 3 ) = 2 2 \sin(x - \frac{\pi}{3}) = \frac{\sqrt{2}}{2} sin ( x − 3 π ) = 2 2
So x − π 3 = π 4 + 2 k π x - \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi x − 3 π = 4 π + 2 kπ or x − π 3 = 3 π 4 + 2 k π x - \frac{\pi}{3} = \frac{3\pi}{4} + 2k\pi x − 3 π = 4 3 π + 2 kπ for k ∈ Z k \in \mathbb{Z} k ∈ Z .
x = π 4 + π 3 + 2 k π = 3 π + 4 π 12 + 2 k π = 7 π 12 + 2 k π x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{3\pi + 4\pi}{12} + 2k\pi = \frac{7\pi}{12} + 2k\pi x = 4 π + 3 π + 2 kπ = 12 3 π + 4 π + 2 kπ = 12 7 π + 2 kπ x = 3 π 4 + π 3 + 2 k π = 9 π + 4 π 12 + 2 k π = 13 π 12 + 2 k π x = \frac{3\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{9\pi + 4\pi}{12} + 2k\pi = \frac{13\pi}{12} + 2k\pi x = 4 3 π + 3 π + 2 kπ = 12 9 π + 4 π + 2 kπ = 12 13 π + 2 kπ
b) cos 2 x − sin 2 x = − 1 \cos 2x - \sin 2x = -1 cos 2 x − sin 2 x = − 1 We can rewrite the equation as:
cos 2 x − sin 2 x + 1 = 0 \cos 2x - \sin 2x + 1 = 0 cos 2 x − sin 2 x + 1 = 0 We can divide by 1 2 + ( − 1 ) 2 = 2 \sqrt{1^2 + (-1)^2} = \sqrt{2} 1 2 + ( − 1 ) 2 = 2 : 1 2 cos 2 x − 1 2 sin 2 x = − 1 2 \frac{1}{\sqrt{2}}\cos 2x - \frac{1}{\sqrt{2}}\sin 2x = - \frac{1}{\sqrt{2}} 2 1 cos 2 x − 2 1 sin 2 x = − 2 1 cos ( π 4 ) cos 2 x − sin ( π 4 ) sin 2 x = − 2 2 \cos(\frac{\pi}{4})\cos 2x - \sin(\frac{\pi}{4})\sin 2x = -\frac{\sqrt{2}}{2} cos ( 4 π ) cos 2 x − sin ( 4 π ) sin 2 x = − 2 2 cos ( 2 x + π 4 ) = − 2 2 \cos(2x + \frac{\pi}{4}) = -\frac{\sqrt{2}}{2} cos ( 2 x + 4 π ) = − 2 2 So 2 x + π 4 = 3 π 4 + 2 k π 2x + \frac{\pi}{4} = \frac{3\pi}{4} + 2k\pi 2 x + 4 π = 4 3 π + 2 kπ or 2 x + π 4 = 5 π 4 + 2 k π 2x + \frac{\pi}{4} = \frac{5\pi}{4} + 2k\pi 2 x + 4 π = 4 5 π + 2 kπ for k ∈ Z k \in \mathbb{Z} k ∈ Z .
2 x = 3 π 4 − π 4 + 2 k π = 2 π 4 + 2 k π = π 2 + 2 k π 2x = \frac{3\pi}{4} - \frac{\pi}{4} + 2k\pi = \frac{2\pi}{4} + 2k\pi = \frac{\pi}{2} + 2k\pi 2 x = 4 3 π − 4 π + 2 kπ = 4 2 π + 2 kπ = 2 π + 2 kπ x = π 4 + k π x = \frac{\pi}{4} + k\pi x = 4 π + kπ
2 x = 5 π 4 − π 4 + 2 k π = 4 π 4 + 2 k π = π + 2 k π 2x = \frac{5\pi}{4} - \frac{\pi}{4} + 2k\pi = \frac{4\pi}{4} + 2k\pi = \pi + 2k\pi 2 x = 4 5 π − 4 π + 2 kπ = 4 4 π + 2 kπ = π + 2 kπ x = π 2 + k π x = \frac{\pi}{2} + k\pi x = 2 π + kπ
Therefore, x = π 4 + k π x = \frac{\pi}{4} + k\pi x = 4 π + kπ or x = π 2 + k π x = \frac{\pi}{2} + k\pi x = 2 π + kπ , k ∈ Z k \in \mathbb{Z} k ∈ Z