The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solutions on the unit circle. We will solve the first two equations: a) $3\cos x - \sqrt{3}\sin x + \sqrt{6} = 0$ b) $\cos 2x - \sin 2x = -1$

TrigonometryTrigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

1. Problem Description

The problem asks us to solve several trigonometric equations in R\mathbb{R} and represent the solutions on the unit circle. We will solve the first two equations:
a) 3cosx3sinx+6=03\cos x - \sqrt{3}\sin x + \sqrt{6} = 0
b) cos2xsin2x=1\cos 2x - \sin 2x = -1

2. Solution Steps

a) 3cosx3sinx+6=03\cos x - \sqrt{3}\sin x + \sqrt{6} = 0
We can rewrite the equation as:
3sinx3cosx=6\sqrt{3}\sin x - 3\cos x = \sqrt{6}
Divide by (3)2+(3)2=3+9=12=23\sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3}:
323sinx323cosx=623\frac{\sqrt{3}}{2\sqrt{3}}\sin x - \frac{3}{2\sqrt{3}}\cos x = \frac{\sqrt{6}}{2\sqrt{3}}
12sinx32cosx=22\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{\sqrt{2}}{2}
cos(π3)sinxsin(π3)cosx=22\cos(\frac{\pi}{3})\sin x - \sin(\frac{\pi}{3})\cos x = \frac{\sqrt{2}}{2}
sin(xπ3)=22\sin(x - \frac{\pi}{3}) = \frac{\sqrt{2}}{2}
So xπ3=π4+2kπx - \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi or xπ3=3π4+2kπx - \frac{\pi}{3} = \frac{3\pi}{4} + 2k\pi for kZk \in \mathbb{Z}.
x=π4+π3+2kπ=3π+4π12+2kπ=7π12+2kπx = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{3\pi + 4\pi}{12} + 2k\pi = \frac{7\pi}{12} + 2k\pi
x=3π4+π3+2kπ=9π+4π12+2kπ=13π12+2kπx = \frac{3\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{9\pi + 4\pi}{12} + 2k\pi = \frac{13\pi}{12} + 2k\pi
b) cos2xsin2x=1\cos 2x - \sin 2x = -1
We can rewrite the equation as:
cos2xsin2x+1=0\cos 2x - \sin 2x + 1 = 0
We can divide by 12+(1)2=2\sqrt{1^2 + (-1)^2} = \sqrt{2}:
12cos2x12sin2x=12\frac{1}{\sqrt{2}}\cos 2x - \frac{1}{\sqrt{2}}\sin 2x = - \frac{1}{\sqrt{2}}
cos(π4)cos2xsin(π4)sin2x=22\cos(\frac{\pi}{4})\cos 2x - \sin(\frac{\pi}{4})\sin 2x = -\frac{\sqrt{2}}{2}
cos(2x+π4)=22\cos(2x + \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}
So 2x+π4=3π4+2kπ2x + \frac{\pi}{4} = \frac{3\pi}{4} + 2k\pi or 2x+π4=5π4+2kπ2x + \frac{\pi}{4} = \frac{5\pi}{4} + 2k\pi for kZk \in \mathbb{Z}.
2x=3π4π4+2kπ=2π4+2kπ=π2+2kπ2x = \frac{3\pi}{4} - \frac{\pi}{4} + 2k\pi = \frac{2\pi}{4} + 2k\pi = \frac{\pi}{2} + 2k\pi
x=π4+kπx = \frac{\pi}{4} + k\pi
2x=5π4π4+2kπ=4π4+2kπ=π+2kπ2x = \frac{5\pi}{4} - \frac{\pi}{4} + 2k\pi = \frac{4\pi}{4} + 2k\pi = \pi + 2k\pi
x=π2+kπx = \frac{\pi}{2} + k\pi
Therefore, x=π4+kπx = \frac{\pi}{4} + k\pi or x=π2+kπx = \frac{\pi}{2} + k\pi, kZk \in \mathbb{Z}

3. Final Answer

a) x=7π12+2kπx = \frac{7\pi}{12} + 2k\pi or x=13π12+2kπx = \frac{13\pi}{12} + 2k\pi, kZk \in \mathbb{Z}
b) x=π4+kπx = \frac{\pi}{4} + k\pi or x=π2+kπx = \frac{\pi}{2} + k\pi, kZk \in \mathbb{Z}

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14

The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\f...

Trigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14