The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)$ and $(1-cos(x))(4cos^2(x) + 2cos(x) - 1)^2 = 1 - cos(5x)$.

TrigonometryTrigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

1. Problem Description

The problem is divided into three parts:

1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)$ and $(1-cos(x))(4cos^2(x) + 2cos(x) - 1)^2 = 1 - cos(5x)$.

2. Solve the equation $cos(5x) = 1$ for $x$ in $R$.

3. Deduce the values of $cos(\frac{2\pi}{5})$, $cos(\frac{4\pi}{5})$ and $cos(\frac{6\pi}{5})$ from the previous questions.

2. Solution Steps

Part 1:
We need to prove cos(5x)=cos(x)(16cos4(x)20cos2(x)+5)cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5).
Using the multiple angle formula, we have:
cos(5x)=16cos5(x)20cos3(x)+5cos(x)cos(5x) = 16cos^5(x) - 20cos^3(x) + 5cos(x)
cos(5x)=cos(x)(16cos4(x)20cos2(x)+5)cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)
Thus, the first statement is proven.
Next, we need to prove (1cos(x))(4cos2(x)+2cos(x)1)2=1cos(5x)(1-cos(x))(4cos^2(x) + 2cos(x) - 1)^2 = 1 - cos(5x).
Let t=cos(x)t = cos(x). We want to show that (1t)(4t2+2t1)2=1(16t520t3+5t)(1-t)(4t^2+2t-1)^2 = 1 - (16t^5 - 20t^3 + 5t)
(1t)(4t2+2t1)2=(1t)(16t4+16t34t2+4t24t+1)=(1t)(16t4+16t38t24t+1)(1-t)(4t^2+2t-1)^2 = (1-t)(16t^4 + 16t^3 -4t^2+4t^2-4t+1) = (1-t)(16t^4 + 16t^3 - 8t^2-4t+1).
(1t)(16t4+16t38t24t+1)=16t4+8t34t24t+1+32t3=16t4+16t3163t24t+116t516t4+8t3t=16t516t54t+1+16t4+8t3t=1(1-t)(16t^4 + 16t^3 - 8t^2-4t+1) = 16t^4+8t^3-4t^2-4t+1 + 32t^3= 16t^4+16t^3-16^3t^2 -4t+1 -16t^5 - 16t^4+8t^3 -t =-16t^5-16t^5 - 4t +1 + -16t^4+8t^3 -t =1
(1t)(16t4+16t38t24t+1)=(1t)(16t4+16t34t21)+1(1-t)(16t^4+16t^3-8t^2-4t+1) = (1-t)(16t^4+16t^3-4t^2-1)+1
16t4+16t38t24t+1(16t5+16t48t34t2+t)=16t4116t^4+16t^3-8t^2-4t+1 - (16t^5+16t^4 -8t^3 -4t^2+t)= 16t^4-1
11t6t5+(1616)t4(16+t)t(8+8)t+(4+t)t+1=116t5t2(1))=5t1 -1t6t^5+(16-16)t^4 (16+t)-{t} (-8+8)t + (-4+t) t+1 =1-16t^5t-2(1))=-5t.
Part 2:
We want to solve cos(5x)=1cos(5x) = 1 for xx in RR.
cos(5x)=1cos(5x) = 1 implies 5x=2kπ5x = 2k\pi, where kk is an integer.
So, x=2kπ5x = \frac{2k\pi}{5}, kZk \in Z.
Part 3:
We need to deduce the values of cos(2π5)cos(\frac{2\pi}{5}), cos(4π5)cos(\frac{4\pi}{5}) and cos(6π5)cos(\frac{6\pi}{5}) from the previous questions.
From part 1, we have cos(5x)=cos(x)(16cos4(x)20cos2(x)+5)cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5). If cos(5x)=1cos(5x) = 1, then x=2kπ5x = \frac{2k\pi}{5}, so
cos(10kπ5)=1cos(\frac{10k\pi}{5}) = 1, then k=0,1,2,3,4k = 0, 1, 2, 3, 4, x=0,2π5,4π5,6π5,8π5. x = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}.
Then we have (1cos(x))(4cos2(x)+2cos(x)1)2=1cos(5x)=0(1-cos(x))(4cos^2(x) + 2cos(x) - 1)^2 = 1-cos(5x) = 0.
So 1cos(x)=01 - cos(x) = 0 or (4cos2(x)+2cos(x)1)2=0(4cos^2(x) + 2cos(x) - 1)^2 = 0
cos(x)=1cos(x) = 1 or 4cos2(x)+2cos(x)1=04cos^2(x) + 2cos(x) - 1 = 0.
If cos(x)=1cos(x) = 1, then x=0x = 0.
Consider the equation 4cos2(x)+2cos(x)1=04cos^2(x) + 2cos(x) - 1 = 0.
Let y=cos(x)y = cos(x). Then 4y2+2y1=04y^2 + 2y - 1 = 0.
Using the quadratic formula, we get y=2±44(4)(1)8=2±208=2±258=1±54y = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8} = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4}.
So cos(x)=1+54cos(x) = \frac{-1+\sqrt{5}}{4} or cos(x)=154cos(x) = \frac{-1-\sqrt{5}}{4}.
cos(2π5),cos(4π5),cos(6π5)cos(\frac{2\pi}{5}), cos(\frac{4\pi}{5}), cos(\frac{6\pi}{5}) are solutions of cos(x)=1+54cos(x) = \frac{-1+\sqrt{5}}{4} or cos(x)=154cos(x) = \frac{-1-\sqrt{5}}{4} and none of them are equal to cos(0)=1cos(0)=1.
Note that cos(2π5)>0cos(\frac{2\pi}{5})>0 since 2π5\frac{2\pi}{5} is in the first quadrant.
cos(4π5)<0cos(\frac{4\pi}{5})<0 and cos(6π5)<0cos(\frac{6\pi}{5})<0 since they are in the second and third quadrants respectively.
cos(2π5)=514cos(\frac{2\pi}{5}) = \frac{\sqrt{5}-1}{4}.
cos(4π5)=514cos(\frac{4\pi}{5}) = \frac{-\sqrt{5}-1}{4}.
cos(6π5)=cos(2π4π5)=cos(4π5)=514cos(\frac{6\pi}{5}) = cos(2\pi-\frac{4\pi}{5}) = cos(\frac{4\pi}{5}) = \frac{-\sqrt{5}-1}{4}.

3. Final Answer

cos(2π5)=514cos(\frac{2\pi}{5}) = \frac{\sqrt{5}-1}{4}
cos(4π5)=514cos(\frac{4\pi}{5}) = \frac{-\sqrt{5}-1}{4}
cos(6π5)=514cos(\frac{6\pi}{5}) = \frac{-\sqrt{5}-1}{4}

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14

The problem asks us to compute the value of $A = \cos(\frac{\pi}{12})\cos(\frac{5\pi}{12}) + \sin(\f...

Trigonometric IdentitiesAngle Sum and Difference FormulasTrigonometric ValuesCosineSine
2025/4/14