Part 1:
We need to prove c o s ( 5 x ) = c o s ( x ) ( 16 c o s 4 ( x ) − 20 c o s 2 ( x ) + 5 ) cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5) cos ( 5 x ) = cos ( x ) ( 16 co s 4 ( x ) − 20 co s 2 ( x ) + 5 ) . Using the multiple angle formula, we have:
c o s ( 5 x ) = 16 c o s 5 ( x ) − 20 c o s 3 ( x ) + 5 c o s ( x ) cos(5x) = 16cos^5(x) - 20cos^3(x) + 5cos(x) cos ( 5 x ) = 16 co s 5 ( x ) − 20 co s 3 ( x ) + 5 cos ( x ) c o s ( 5 x ) = c o s ( x ) ( 16 c o s 4 ( x ) − 20 c o s 2 ( x ) + 5 ) cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5) cos ( 5 x ) = cos ( x ) ( 16 co s 4 ( x ) − 20 co s 2 ( x ) + 5 ) Thus, the first statement is proven.
Next, we need to prove ( 1 − c o s ( x ) ) ( 4 c o s 2 ( x ) + 2 c o s ( x ) − 1 ) 2 = 1 − c o s ( 5 x ) (1-cos(x))(4cos^2(x) + 2cos(x) - 1)^2 = 1 - cos(5x) ( 1 − cos ( x )) ( 4 co s 2 ( x ) + 2 cos ( x ) − 1 ) 2 = 1 − cos ( 5 x ) . Let t = c o s ( x ) t = cos(x) t = cos ( x ) . We want to show that ( 1 − t ) ( 4 t 2 + 2 t − 1 ) 2 = 1 − ( 16 t 5 − 20 t 3 + 5 t ) (1-t)(4t^2+2t-1)^2 = 1 - (16t^5 - 20t^3 + 5t) ( 1 − t ) ( 4 t 2 + 2 t − 1 ) 2 = 1 − ( 16 t 5 − 20 t 3 + 5 t ) ( 1 − t ) ( 4 t 2 + 2 t − 1 ) 2 = ( 1 − t ) ( 16 t 4 + 16 t 3 − 4 t 2 + 4 t 2 − 4 t + 1 ) = ( 1 − t ) ( 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 ) (1-t)(4t^2+2t-1)^2 = (1-t)(16t^4 + 16t^3 -4t^2+4t^2-4t+1) = (1-t)(16t^4 + 16t^3 - 8t^2-4t+1) ( 1 − t ) ( 4 t 2 + 2 t − 1 ) 2 = ( 1 − t ) ( 16 t 4 + 16 t 3 − 4 t 2 + 4 t 2 − 4 t + 1 ) = ( 1 − t ) ( 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 ) . ( 1 − t ) ( 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 ) = 16 t 4 + 8 t 3 − 4 t 2 − 4 t + 1 + 32 t 3 = 16 t 4 + 16 t 3 − 16 3 t 2 − 4 t + 1 − 16 t 5 − 16 t 4 + 8 t 3 − t = − 16 t 5 − 16 t 5 − 4 t + 1 + − 16 t 4 + 8 t 3 − t = 1 (1-t)(16t^4 + 16t^3 - 8t^2-4t+1) = 16t^4+8t^3-4t^2-4t+1 + 32t^3= 16t^4+16t^3-16^3t^2 -4t+1 -16t^5 - 16t^4+8t^3 -t =-16t^5-16t^5 - 4t +1 + -16t^4+8t^3 -t =1 ( 1 − t ) ( 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 ) = 16 t 4 + 8 t 3 − 4 t 2 − 4 t + 1 + 32 t 3 = 16 t 4 + 16 t 3 − 1 6 3 t 2 − 4 t + 1 − 16 t 5 − 16 t 4 + 8 t 3 − t = − 16 t 5 − 16 t 5 − 4 t + 1 + − 16 t 4 + 8 t 3 − t = 1 ( 1 − t ) ( 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 ) = ( 1 − t ) ( 16 t 4 + 16 t 3 − 4 t 2 − 1 ) + 1 (1-t)(16t^4+16t^3-8t^2-4t+1) = (1-t)(16t^4+16t^3-4t^2-1)+1 ( 1 − t ) ( 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 ) = ( 1 − t ) ( 16 t 4 + 16 t 3 − 4 t 2 − 1 ) + 1 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 − ( 16 t 5 + 16 t 4 − 8 t 3 − 4 t 2 + t ) = 16 t 4 − 1 16t^4+16t^3-8t^2-4t+1 - (16t^5+16t^4 -8t^3 -4t^2+t)= 16t^4-1 16 t 4 + 16 t 3 − 8 t 2 − 4 t + 1 − ( 16 t 5 + 16 t 4 − 8 t 3 − 4 t 2 + t ) = 16 t 4 − 1 1 − 1 t 6 t 5 + ( 16 − 16 ) t 4 ( 16 + t ) − t ( − 8 + 8 ) t + ( − 4 + t ) t + 1 = 1 − 16 t 5 t − 2 ( 1 ) ) = − 5 t 1 -1t6t^5+(16-16)t^4 (16+t)-{t} (-8+8)t + (-4+t) t+1 =1-16t^5t-2(1))=-5t 1 − 1 t 6 t 5 + ( 16 − 16 ) t 4 ( 16 + t ) − t ( − 8 + 8 ) t + ( − 4 + t ) t + 1 = 1 − 16 t 5 t − 2 ( 1 )) = − 5 t .
Part 2:
We want to solve c o s ( 5 x ) = 1 cos(5x) = 1 cos ( 5 x ) = 1 for x x x in R R R . c o s ( 5 x ) = 1 cos(5x) = 1 cos ( 5 x ) = 1 implies 5 x = 2 k π 5x = 2k\pi 5 x = 2 kπ , where k k k is an integer. So, x = 2 k π 5 x = \frac{2k\pi}{5} x = 5 2 kπ , k ∈ Z k \in Z k ∈ Z .
Part 3:
We need to deduce the values of c o s ( 2 π 5 ) cos(\frac{2\pi}{5}) cos ( 5 2 π ) , c o s ( 4 π 5 ) cos(\frac{4\pi}{5}) cos ( 5 4 π ) and c o s ( 6 π 5 ) cos(\frac{6\pi}{5}) cos ( 5 6 π ) from the previous questions. From part 1, we have c o s ( 5 x ) = c o s ( x ) ( 16 c o s 4 ( x ) − 20 c o s 2 ( x ) + 5 ) cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5) cos ( 5 x ) = cos ( x ) ( 16 co s 4 ( x ) − 20 co s 2 ( x ) + 5 ) . If c o s ( 5 x ) = 1 cos(5x) = 1 cos ( 5 x ) = 1 , then x = 2 k π 5 x = \frac{2k\pi}{5} x = 5 2 kπ , so c o s ( 10 k π 5 ) = 1 cos(\frac{10k\pi}{5}) = 1 cos ( 5 10 kπ ) = 1 , then k = 0 , 1 , 2 , 3 , 4 k = 0, 1, 2, 3, 4 k = 0 , 1 , 2 , 3 , 4 , x = 0 , 2 π 5 , 4 π 5 , 6 π 5 , 8 π 5 . x = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}. x = 0 , 5 2 π , 5 4 π , 5 6 π , 5 8 π . Then we have ( 1 − c o s ( x ) ) ( 4 c o s 2 ( x ) + 2 c o s ( x ) − 1 ) 2 = 1 − c o s ( 5 x ) = 0 (1-cos(x))(4cos^2(x) + 2cos(x) - 1)^2 = 1-cos(5x) = 0 ( 1 − cos ( x )) ( 4 co s 2 ( x ) + 2 cos ( x ) − 1 ) 2 = 1 − cos ( 5 x ) = 0 . So 1 − c o s ( x ) = 0 1 - cos(x) = 0 1 − cos ( x ) = 0 or ( 4 c o s 2 ( x ) + 2 c o s ( x ) − 1 ) 2 = 0 (4cos^2(x) + 2cos(x) - 1)^2 = 0 ( 4 co s 2 ( x ) + 2 cos ( x ) − 1 ) 2 = 0 c o s ( x ) = 1 cos(x) = 1 cos ( x ) = 1 or 4 c o s 2 ( x ) + 2 c o s ( x ) − 1 = 0 4cos^2(x) + 2cos(x) - 1 = 0 4 co s 2 ( x ) + 2 cos ( x ) − 1 = 0 . If c o s ( x ) = 1 cos(x) = 1 cos ( x ) = 1 , then x = 0 x = 0 x = 0 .
Consider the equation 4 c o s 2 ( x ) + 2 c o s ( x ) − 1 = 0 4cos^2(x) + 2cos(x) - 1 = 0 4 co s 2 ( x ) + 2 cos ( x ) − 1 = 0 . Let y = c o s ( x ) y = cos(x) y = cos ( x ) . Then 4 y 2 + 2 y − 1 = 0 4y^2 + 2y - 1 = 0 4 y 2 + 2 y − 1 = 0 . Using the quadratic formula, we get y = − 2 ± 4 − 4 ( 4 ) ( − 1 ) 8 = − 2 ± 20 8 = − 2 ± 2 5 8 = − 1 ± 5 4 y = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8} = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4} y = 8 − 2 ± 4 − 4 ( 4 ) ( − 1 ) = 8 − 2 ± 20 = 8 − 2 ± 2 5 = 4 − 1 ± 5 . So c o s ( x ) = − 1 + 5 4 cos(x) = \frac{-1+\sqrt{5}}{4} cos ( x ) = 4 − 1 + 5 or c o s ( x ) = − 1 − 5 4 cos(x) = \frac{-1-\sqrt{5}}{4} cos ( x ) = 4 − 1 − 5 . c o s ( 2 π 5 ) , c o s ( 4 π 5 ) , c o s ( 6 π 5 ) cos(\frac{2\pi}{5}), cos(\frac{4\pi}{5}), cos(\frac{6\pi}{5}) cos ( 5 2 π ) , cos ( 5 4 π ) , cos ( 5 6 π ) are solutions of c o s ( x ) = − 1 + 5 4 cos(x) = \frac{-1+\sqrt{5}}{4} cos ( x ) = 4 − 1 + 5 or c o s ( x ) = − 1 − 5 4 cos(x) = \frac{-1-\sqrt{5}}{4} cos ( x ) = 4 − 1 − 5 and none of them are equal to c o s ( 0 ) = 1 cos(0)=1 cos ( 0 ) = 1 .
Note that c o s ( 2 π 5 ) > 0 cos(\frac{2\pi}{5})>0 cos ( 5 2 π ) > 0 since 2 π 5 \frac{2\pi}{5} 5 2 π is in the first quadrant. c o s ( 4 π 5 ) < 0 cos(\frac{4\pi}{5})<0 cos ( 5 4 π ) < 0 and c o s ( 6 π 5 ) < 0 cos(\frac{6\pi}{5})<0 cos ( 5 6 π ) < 0 since they are in the second and third quadrants respectively.
c o s ( 2 π 5 ) = 5 − 1 4 cos(\frac{2\pi}{5}) = \frac{\sqrt{5}-1}{4} cos ( 5 2 π ) = 4 5 − 1 . c o s ( 4 π 5 ) = − 5 − 1 4 cos(\frac{4\pi}{5}) = \frac{-\sqrt{5}-1}{4} cos ( 5 4 π ) = 4 − 5 − 1 . c o s ( 6 π 5 ) = c o s ( 2 π − 4 π 5 ) = c o s ( 4 π 5 ) = − 5 − 1 4 cos(\frac{6\pi}{5}) = cos(2\pi-\frac{4\pi}{5}) = cos(\frac{4\pi}{5}) = \frac{-\sqrt{5}-1}{4} cos ( 5 6 π ) = cos ( 2 π − 5 4 π ) = cos ( 5 4 π ) = 4 − 5 − 1 .