The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac{10\pi}{3})$ c. $tan(-420^\circ)$ d. $sin(-660^\circ)$ e. $cos(\frac{41\pi}{4})$ f. $tan(\frac{-19\pi}{3})$ g. $4cos(135^\circ)$ h. $\frac{5}{3}cos(300^\circ)$ i. $-2cos(-150^\circ)$

TrigonometryTrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

1. Problem Description

The problem asks us to evaluate several trigonometric expressions:
a. sin(390)sin(390^\circ)
b. cos(10π3)cos(\frac{10\pi}{3})
c. tan(420)tan(-420^\circ)
d. sin(660)sin(-660^\circ)
e. cos(41π4)cos(\frac{41\pi}{4})
f. tan(19π3)tan(\frac{-19\pi}{3})
g. 4cos(135)4cos(135^\circ)
h. 53cos(300)\frac{5}{3}cos(300^\circ)
i. 2cos(150)-2cos(-150^\circ)

2. Solution Steps

a. sin(390)=sin(390360)=sin(30)=12sin(390^\circ) = sin(390^\circ - 360^\circ) = sin(30^\circ) = \frac{1}{2}
b. cos(10π3)=cos(10π32π)=cos(10π36π3)=cos(4π3)=cos(π+π3)=cos(π3)=12cos(\frac{10\pi}{3}) = cos(\frac{10\pi}{3} - 2\pi) = cos(\frac{10\pi}{3} - \frac{6\pi}{3}) = cos(\frac{4\pi}{3}) = cos(\pi + \frac{\pi}{3}) = -cos(\frac{\pi}{3}) = -\frac{1}{2}
c. tan(420)=tan(420+360)=tan(60)=tan(60)=3tan(-420^\circ) = tan(-420^\circ + 360^\circ) = tan(-60^\circ) = -tan(60^\circ) = -\sqrt{3}
d. sin(660)=sin(660+2360)=sin(660+720)=sin(60)=32sin(-660^\circ) = sin(-660^\circ + 2 \cdot 360^\circ) = sin(-660^\circ + 720^\circ) = sin(60^\circ) = \frac{\sqrt{3}}{2}
e. cos(41π4)=cos(41π410π)=cos(41π40π4)=cos(π4)=22cos(\frac{41\pi}{4}) = cos(\frac{41\pi}{4} - 10\pi) = cos(\frac{41\pi - 40\pi}{4}) = cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}
f. tan(19π3)=tan(19π3+6π)=tan(19π+18π3)=tan(π3)=tan(π3)=3tan(\frac{-19\pi}{3}) = tan(\frac{-19\pi}{3} + 6\pi) = tan(\frac{-19\pi + 18\pi}{3}) = tan(\frac{-\pi}{3}) = -tan(\frac{\pi}{3}) = -\sqrt{3}
g. 4cos(135)=4(22)=224cos(135^\circ) = 4(-\frac{\sqrt{2}}{2}) = -2\sqrt{2}
h. 53cos(300)=53cos(36060)=53cos(60)=53(12)=56\frac{5}{3}cos(300^\circ) = \frac{5}{3}cos(360^\circ - 60^\circ) = \frac{5}{3}cos(60^\circ) = \frac{5}{3}(\frac{1}{2}) = \frac{5}{6}
i. 2cos(150)=2cos(150+360)=2cos(210)=2cos(180+30)=2(cos(30))=2cos(30)=2(32)=3-2cos(-150^\circ) = -2cos(-150^\circ + 360^\circ) = -2cos(210^\circ) = -2cos(180^\circ + 30^\circ) = -2(-cos(30^\circ)) = 2cos(30^\circ) = 2(\frac{\sqrt{3}}{2}) = \sqrt{3}

3. Final Answer

a. 12\frac{1}{2}
b. 12-\frac{1}{2}
c. 3-\sqrt{3}
d. 32\frac{\sqrt{3}}{2}
e. 22\frac{\sqrt{2}}{2}
f. 3-\sqrt{3}
g. 22-2\sqrt{2}
h. 56\frac{5}{6}
i. 3\sqrt{3}

Related problems in "Trigonometry"

We are asked to simplify the expression: $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos ...

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasTangent FunctionEquation Solving
2025/4/22

We are asked to solve the trigonometric equation $\tan x + \cot x = 2(\sin 2x + \cos 2x)$.

Trigonometric EquationsTrigonometric IdentitiesSolution of Equations
2025/4/22

The problem asks to solve for $x$ in the equation $\sin(5 \times 21^{\circ}) = \cos(9^{\circ}) + \ta...

Trigonometric EquationsTrigonometric IdentitiesSineCosineTangentAngle Sum and Difference Identities
2025/4/21

The problem is to simplify the expression $\tan(x) \cot(9^\circ) + \tan(5x)$. I assume the question...

Trigonometric IdentitiesTangent FunctionCotangent FunctionSimplification
2025/4/21

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14