The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

TrigonometryTrigonometric IdentitiesSimplificationSineCosine
2025/4/26

1. Problem Description

The problem is to simplify the expression sin2(x)+sin(x)cos(x)\sin^2(x) + \sin(x)\cos(x).

2. Solution Steps

We are given the expression sin2(x)+sin(x)cos(x)\sin^2(x) + \sin(x)\cos(x).
We can factor out sin(x)\sin(x) from both terms.
sin2(x)+sin(x)cos(x)=sin(x)(sin(x)+cos(x))\sin^2(x) + \sin(x)\cos(x) = \sin(x)(\sin(x) + \cos(x))
The expression can also be written using the identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x)
sin(x)cos(x)=12sin(2x)\sin(x)\cos(x) = \frac{1}{2}\sin(2x)
Therefore, we have:
sin2(x)+sin(x)cos(x)=sin2(x)+12sin(2x)\sin^2(x) + \sin(x)\cos(x) = \sin^2(x) + \frac{1}{2}\sin(2x)
We can also use the identity sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}.
sin2(x)+sin(x)cos(x)=1cos(2x)2+12sin(2x)\sin^2(x) + \sin(x)\cos(x) = \frac{1 - \cos(2x)}{2} + \frac{1}{2}\sin(2x)
=1212cos(2x)+12sin(2x)= \frac{1}{2} - \frac{1}{2}\cos(2x) + \frac{1}{2}\sin(2x)
=12(1+sin(2x)cos(2x))= \frac{1}{2} (1 + \sin(2x) - \cos(2x))
However, sin(x)(sin(x)+cos(x))\sin(x)(\sin(x) + \cos(x)) is the simplest factored form.

3. Final Answer

sin(x)(sin(x)+cos(x))\sin(x)(\sin(x) + \cos(x))

Related problems in "Trigonometry"

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28

The image shows a set of trigonometry problems. I will solve problem number 15: $(cos\theta + cos\al...

TrigonometryTrigonometric IdentitiesCosine Angle Sum/DifferenceHalf-Angle Formula
2025/4/28

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

Solve the trigonometric equation: $\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\si...

Trigonometric EquationsTriple Angle FormulasTrigonometric IdentitiesSolution of Equations
2025/4/25

The problem requires us to prove the following trigonometric identity: $tan(x+y) - tan(x) - tan(y) =...

Trigonometric IdentitiesTangent Addition FormulaProof
2025/4/25