First, we expand the squares:
(cosθ+cosα)2+(sinθ+sinα)2=cos2θ+2cosθcosα+cos2α+sin2θ+2sinθsinα+sin2α Next, we group terms using the Pythagorean trigonometric identity sin2x+cos2x=1: (cos2θ+sin2θ)+(cos2α+sin2α)+2cosθcosα+2sinθsinα=1+1+2(cosθcosα+sinθsinα) Then, we apply the cosine subtraction identity cos(A−B)=cosAcosB+sinAsinB: 2+2cos(θ−α)=2[1+cos(θ−α)] Using the half-angle identity cos(2x)=2cos2(x)−1, we have 1+cos(2x)=2cos2(x). Thus, 1+cos(θ−α)=2cos2(2θ−α). So, the expression becomes:
2[2cos2(2θ−α)]=4cos2(2θ−α)