The image shows a set of trigonometry problems. I will solve problem number 15: $(cos\theta + cos\alpha)^2 + (sin\theta + sin\alpha)^2 = ?$

TrigonometryTrigonometryTrigonometric IdentitiesCosine Angle Sum/DifferenceHalf-Angle Formula
2025/4/28

1. Problem Description

The image shows a set of trigonometry problems. I will solve problem number 15: (cosθ+cosα)2+(sinθ+sinα)2=?(cos\theta + cos\alpha)^2 + (sin\theta + sin\alpha)^2 = ?

2. Solution Steps

First, we expand the squares:
(cosθ+cosα)2+(sinθ+sinα)2=cos2θ+2cosθcosα+cos2α+sin2θ+2sinθsinα+sin2α(cos\theta + cos\alpha)^2 + (sin\theta + sin\alpha)^2 = cos^2\theta + 2cos\theta cos\alpha + cos^2\alpha + sin^2\theta + 2sin\theta sin\alpha + sin^2\alpha
Next, we group terms using the Pythagorean trigonometric identity sin2x+cos2x=1sin^2x + cos^2x = 1:
(cos2θ+sin2θ)+(cos2α+sin2α)+2cosθcosα+2sinθsinα=1+1+2(cosθcosα+sinθsinα)(cos^2\theta + sin^2\theta) + (cos^2\alpha + sin^2\alpha) + 2cos\theta cos\alpha + 2sin\theta sin\alpha = 1 + 1 + 2(cos\theta cos\alpha + sin\theta sin\alpha)
Then, we apply the cosine subtraction identity cos(AB)=cosAcosB+sinAsinBcos(A - B) = cosAcosB + sinAsinB:
2+2cos(θα)=2[1+cos(θα)]2 + 2cos(\theta - \alpha) = 2[1 + cos(\theta - \alpha)]
Using the half-angle identity cos(2x)=2cos2(x)1cos(2x) = 2cos^2(x) - 1, we have 1+cos(2x)=2cos2(x)1 + cos(2x) = 2cos^2(x). Thus, 1+cos(θα)=2cos2(θα2)1 + cos(\theta - \alpha) = 2cos^2(\frac{\theta - \alpha}{2}).
So, the expression becomes:
2[2cos2(θα2)]=4cos2(θα2)2[2cos^2(\frac{\theta - \alpha}{2})] = 4cos^2(\frac{\theta - \alpha}{2})

3. Final Answer

4cos2(θα2)4cos^2(\frac{\theta - \alpha}{2})

Related problems in "Trigonometry"

We are given that $\sin 3y = \cos 2y$ and $0^{\circ} \le y \le 90^{\circ}$. We are asked to find the...

TrigonometryTrigonometric EquationsSineCosine
2025/4/29

We are given that $\tan x = 1$, where $0^\circ \le x \le 90^\circ$. We are asked to evaluate $\frac{...

TrigonometryTrigonometric IdentitiesTangent FunctionSine FunctionCosine FunctionAngle Evaluation
2025/4/29

Prove the following trigonometric identity: $\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \co...

Trigonometric IdentitiesTrigonometric EquationsProof
2025/4/29

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26