We are given that $\tan x = 1$, where $0^\circ \le x \le 90^\circ$. We are asked to evaluate $\frac{1-\sin^2 x}{\cos x}$.

TrigonometryTrigonometryTrigonometric IdentitiesTangent FunctionSine FunctionCosine FunctionAngle Evaluation
2025/4/29

1. Problem Description

We are given that tanx=1\tan x = 1, where 0x900^\circ \le x \le 90^\circ. We are asked to evaluate 1sin2xcosx\frac{1-\sin^2 x}{\cos x}.

2. Solution Steps

Since tanx=1\tan x = 1 and 0x900^\circ \le x \le 90^\circ, we know that x=45x = 45^\circ.
We need to find sinx\sin x and cosx\cos x.
sin45=22\sin 45^\circ = \frac{\sqrt{2}}{2} and cos45=22\cos 45^\circ = \frac{\sqrt{2}}{2}.
Now, we can substitute these values into the expression 1sin2xcosx\frac{1 - \sin^2 x}{\cos x}.
1sin2xcosx=1(22)222=12422=11222=1222=1222=12=22\frac{1 - \sin^2 x}{\cos x} = \frac{1 - (\frac{\sqrt{2}}{2})^2}{\frac{\sqrt{2}}{2}} = \frac{1 - \frac{2}{4}}{\frac{\sqrt{2}}{2}} = \frac{1 - \frac{1}{2}}{\frac{\sqrt{2}}{2}} = \frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}} = \frac{1}{2} \cdot \frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.
Alternatively, we can use the trigonometric identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, which means 1sin2x=cos2x1 - \sin^2 x = \cos^2 x.
Therefore, 1sin2xcosx=cos2xcosx=cosx\frac{1 - \sin^2 x}{\cos x} = \frac{\cos^2 x}{\cos x} = \cos x.
Since tanx=1\tan x = 1, we have x=45x = 45^\circ.
Thus, cosx=cos45=22\cos x = \cos 45^\circ = \frac{\sqrt{2}}{2}.

3. Final Answer

The final answer is 22\frac{\sqrt{2}}{2} (Option C).

Related problems in "Trigonometry"

We are given that $\sin 3y = \cos 2y$ and $0^{\circ} \le y \le 90^{\circ}$. We are asked to find the...

TrigonometryTrigonometric EquationsSineCosine
2025/4/29

Prove the following trigonometric identity: $\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \co...

Trigonometric IdentitiesTrigonometric EquationsProof
2025/4/29

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28

The image shows a set of trigonometry problems. I will solve problem number 15: $(cos\theta + cos\al...

TrigonometryTrigonometric IdentitiesCosine Angle Sum/DifferenceHalf-Angle Formula
2025/4/28

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26