Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

TrigonometryTrigonometric IdentitiesSimplificationSineCosine
2025/4/26

1. Problem Description

Simplify the trigonometric expression sin2x+sinxcos2x\sin^2x + \sin x \cos^2 x.

2. Solution Steps

We are given the expression sin2x+sinxcos2x\sin^2x + \sin x \cos^2 x.
We can factor out sinx\sin x from both terms:
sinx(sinx+cos2x) \sin x (\sin x + \cos^2 x)
We know the trigonometric identity:
sin2x+cos2x=1 \sin^2 x + \cos^2 x = 1
From this, we can express sinx\sin x as 1cos2x1 - \cos^2 x, but that's not helpful in this case. However, we can write sinx=1cos2x\sin x = 1 - \cos^2 x, and substitute sin2x=1cos2x\sin^2 x = 1-\cos^2 x.
Then, the expression is sinx(sinx+cos2x)\sin x (\sin x + \cos^2 x). We know that sinx+cos2x\sin x + \cos^2 x is not equal to one.
Instead we will use the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.
Then we can write sinx(sinx+cos2x)=sinx(sinx+cos2x)\sin x (\sin x + \cos^2 x) = \sin x (\sin x + \cos^2 x).
We have
sinx(sinx+cos2x)=sinx(sinx)+sinx(cos2x)=sin2x+sinxcos2x\sin x (\sin x + \cos^2 x) = \sin x (\sin x) + \sin x (\cos^2 x) = \sin^2 x + \sin x \cos^2 x
We have the expression:
sinx(sinx+cos2x) \sin x(\sin x + \cos^2 x)
Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, we have sinx+cos2x1\sin x + \cos^2 x \neq 1 unless sinx=sin2x\sin x = \sin^2 x, which happens only if sinx=0\sin x = 0 or sinx=1\sin x = 1.
We can rewrite the expression inside the parenthesis.
sinx=1cos2x \sin x = 1 - \cos^2 x
Thus, sinx+cos2x=1cos2x+cos2x=1\sin x + \cos^2 x = 1 - \cos^2 x + \cos^2 x = 1
sinx(sinx+cos2x)=sinx(1)=sinx \sin x(\sin x + \cos^2 x) = \sin x(1) = \sin x
Also we can proceed by using the identity sin2x=sinxsinx=sinx(1cos2x)=sinxsinxcos2x\sin^2x = \sin x \sin x = \sin x (1-cos^2 x) = \sin x - \sin x \cos^2 x, but then we would have
sinxsinxcos2x+sinxcos2x=sinx\sin x - \sin x \cos^2 x + \sin x \cos^2 x = \sin x

3. Final Answer

sinx\sin x

Related problems in "Trigonometry"

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28

The image shows a set of trigonometry problems. I will solve problem number 15: $(cos\theta + cos\al...

TrigonometryTrigonometric IdentitiesCosine Angle Sum/DifferenceHalf-Angle Formula
2025/4/28

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

Solve the trigonometric equation: $\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\si...

Trigonometric EquationsTriple Angle FormulasTrigonometric IdentitiesSolution of Equations
2025/4/25

The problem requires us to prove the following trigonometric identity: $tan(x+y) - tan(x) - tan(y) =...

Trigonometric IdentitiesTangent Addition FormulaProof
2025/4/25