Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

TrigonometryTrigonometric IdentitiesSimplificationSineCosine
2025/4/26

1. Problem Description

Simplify the trigonometric expression sin2x+sinxcos2x\sin^2x + \sin x \cos^2 x.

2. Solution Steps

We are given the expression sin2x+sinxcos2x\sin^2x + \sin x \cos^2 x.
We can factor out sinx\sin x from both terms:
sinx(sinx+cos2x) \sin x (\sin x + \cos^2 x)
We know the trigonometric identity:
sin2x+cos2x=1 \sin^2 x + \cos^2 x = 1
From this, we can express sinx\sin x as 1cos2x1 - \cos^2 x, but that's not helpful in this case. However, we can write sinx=1cos2x\sin x = 1 - \cos^2 x, and substitute sin2x=1cos2x\sin^2 x = 1-\cos^2 x.
Then, the expression is sinx(sinx+cos2x)\sin x (\sin x + \cos^2 x). We know that sinx+cos2x\sin x + \cos^2 x is not equal to one.
Instead we will use the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.
Then we can write sinx(sinx+cos2x)=sinx(sinx+cos2x)\sin x (\sin x + \cos^2 x) = \sin x (\sin x + \cos^2 x).
We have
sinx(sinx+cos2x)=sinx(sinx)+sinx(cos2x)=sin2x+sinxcos2x\sin x (\sin x + \cos^2 x) = \sin x (\sin x) + \sin x (\cos^2 x) = \sin^2 x + \sin x \cos^2 x
We have the expression:
sinx(sinx+cos2x) \sin x(\sin x + \cos^2 x)
Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, we have sinx+cos2x1\sin x + \cos^2 x \neq 1 unless sinx=sin2x\sin x = \sin^2 x, which happens only if sinx=0\sin x = 0 or sinx=1\sin x = 1.
We can rewrite the expression inside the parenthesis.
sinx=1cos2x \sin x = 1 - \cos^2 x
Thus, sinx+cos2x=1cos2x+cos2x=1\sin x + \cos^2 x = 1 - \cos^2 x + \cos^2 x = 1
sinx(sinx+cos2x)=sinx(1)=sinx \sin x(\sin x + \cos^2 x) = \sin x(1) = \sin x
Also we can proceed by using the identity sin2x=sinxsinx=sinx(1cos2x)=sinxsinxcos2x\sin^2x = \sin x \sin x = \sin x (1-cos^2 x) = \sin x - \sin x \cos^2 x, but then we would have
sinxsinxcos2x+sinxcos2x=sinx\sin x - \sin x \cos^2 x + \sin x \cos^2 x = \sin x

3. Final Answer

sinx\sin x

Related problems in "Trigonometry"

We are asked to evaluate two trigonometric expressions: (7) $sin(10^{\circ}) - sin(70^{\circ}) + sin...

Trigonometric IdentitiesSum-to-Product FormulasProduct-to-Sum FormulasTrigonometric Simplification
2025/6/24

We are asked to solve three equations and one inequality for $x$ in the interval $0 \le x < 2\pi$. T...

Trigonometric EquationsTrigonometric InequalitiesDouble Angle FormulasSum-to-Product FormulasIntervals
2025/6/24

The image presents a series of trigonometric problems. 1. Transform $\sin x + \cos x$ and $3\sin x ...

Trigonometric IdentitiesTrigonometric EquationsTrigonometric InequalitiesSum-to-Product FormulasAngle Addition FormulasMaximum and Minimum Values
2025/6/24

The problem requires us to rewrite the given trigonometric expressions in the form $r \sin(x+\alpha)...

TrigonometryTrigonometric IdentitiesAmplitude and Phase ShiftSine Function
2025/6/24

Given that $tan(\alpha) = -\frac{4}{3}$ and $\alpha$ is in the second quadrant, find the value of $c...

TrigonometryTrigonometric FunctionsTangentCosineQuadrantsPythagorean Identity
2025/6/16

Given that $\tan \alpha = 3$, we need to find the value of the expression $\frac{\sin \alpha - \cos ...

TrigonometryTangentSineCosineTrigonometric IdentitiesExpression Evaluation
2025/6/14

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29