We are given the expression sin2x+sinxcos2x. We can factor out sinx from both terms: sinx(sinx+cos2x) We know the trigonometric identity:
sin2x+cos2x=1 From this, we can express sinx as 1−cos2x, but that's not helpful in this case. However, we can write sinx=1−cos2x, and substitute sin2x=1−cos2x. Then, the expression is sinx(sinx+cos2x). We know that sinx+cos2x is not equal to one. Instead we will use the identity sin2x+cos2x=1. Then we can write sinx(sinx+cos2x)=sinx(sinx+cos2x). We have
sinx(sinx+cos2x)=sinx(sinx)+sinx(cos2x)=sin2x+sinxcos2x We have the expression:
sinx(sinx+cos2x) Since sin2x+cos2x=1, we have sinx+cos2x=1 unless sinx=sin2x, which happens only if sinx=0 or sinx=1. We can rewrite the expression inside the parenthesis.
sinx=1−cos2x Thus, sinx+cos2x=1−cos2x+cos2x=1 sinx(sinx+cos2x)=sinx(1)=sinx Also we can proceed by using the identity sin2x=sinxsinx=sinx(1−cos2x)=sinx−sinxcos2x, but then we would have sinx−sinxcos2x+sinxcos2x=sinx